Electron density modulation of MoP by rare earth metal as highly efficient electrocatalysts for pH-universal hydrogen evolution reaction

磷化物 催化作用 密度泛函理论 兴奋剂 材料科学 电子结构 金属 纳米颗粒 纳米技术 无机化学 化学 化学工程 化学物理 电催化剂 物理化学 计算化学 电化学 光电子学 电极 冶金 工程类 生物化学 有机化学
作者
Peng Wei,Xiaogang Li,Zhimin He,Zesen Li,Xiaoyu Zhang,Xueping Sun,Qing Li,Hui Yang,Jiantao Han,Yunhui Huang
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:299: 120657-120657 被引量:89
标识
DOI:10.1016/j.apcatb.2021.120657
摘要

Profiting from Pt-like electronic structure and high electrical conductivity, molybdenum phosphide (MoP) has received widespread attention as a hydrogen evolution reaction (HER) catalyst. Although various effective strategies have been developed to regulate the bare MoP synthesis, the electrocatalytic performance of MoP is still far from satisfactory, especially in pH-universal applications. Recently, doping of heterogeneous elements, particularly for rare earth (RE) metals, has been emerged as an effective method to precisely regulate the local electronic structure of phosphides. Herein, the novel and controllable La/Yb-doped MoP nanoparticles encapsulated in nitrogen-doped carbon matrix ([email protected]) are synthesized. The as-prepared La/Yb-doped catalysts ([email protected] (RE = La, Yb)) exhibit fantastic HER electrocatalytic performance for both activity and durability in a wide pH range. Detailed structural characterizations and density functional theory (DFT) calculations validate that the electronic densities around Mo and P atoms are effectively tuned by La/Yb doping atoms, resulting in the optimization in Gibbs free energy of MoP toward the hydrogen adsorption, which can boost its intrinsic HER activity. This research enriches RE-modified catalysts and reveals that the RE metal doping can be extended to other non-noble metal catalysts as a general method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DAN_完成签到,获得积分10
刚刚
刚刚
科研通AI2S应助屹舟采纳,获得10
刚刚
科研通AI5应助一一采纳,获得10
1秒前
隐形的紫菜完成签到,获得积分10
1秒前
23132发布了新的文献求助10
2秒前
cora完成签到,获得积分10
3秒前
放眼天下完成签到 ,获得积分10
4秒前
文毛完成签到,获得积分10
4秒前
4秒前
5秒前
兴奋的问旋完成签到,获得积分10
5秒前
张张完成签到,获得积分10
5秒前
陈文学完成签到,获得积分10
6秒前
一一发布了新的文献求助10
6秒前
bkagyin应助潇洒的冷玉采纳,获得10
7秒前
通~发布了新的文献求助10
7秒前
7秒前
芒果完成签到,获得积分10
7秒前
8秒前
cly3397完成签到,获得积分10
8秒前
开心发布了新的文献求助10
8秒前
8秒前
少年发布了新的文献求助10
9秒前
天天快乐应助阿毛采纳,获得10
9秒前
Jenny应助狂野的以珊采纳,获得10
9秒前
10秒前
10秒前
11秒前
12秒前
研友_LMNjkn发布了新的文献求助10
12秒前
ding应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
yizhiGao应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
pinging应助科研通管家采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794