亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Random Topology and Random Multiscale Mapping: An Automated Design of Multiscale and Lightweight Neural Network for Remote-Sensing Image Recognition

计算机科学 卷积神经网络 拓扑(电路) 合成孔径雷达 上下文图像分类 网络拓扑 特征提取 人工智能 人工神经网络 特征(语言学) 模式识别(心理学) 算法 图像(数学) 操作系统 哲学 组合数学 语言学 数学
作者
Jihao Li,Martin Weinmann,Xian Sun,Wenhui Diao,Yingchao Feng,Kun Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:2
标识
DOI:10.1109/tgrs.2021.3102988
摘要

With the proposal of neural architecture search (NAS), automated network architecture design gradually becomes a new way in deep learning research. Due to its high capability regarding automated design, some pioneers have made an attempt to apply NAS in remote sensing and made some achievements, like 1-D/3-D Auto-convolutional neural network (CNN) and polarimetric synthetic aperture radar (PolSAR)-tailored Differentiable Architecture Search (PDAS). However, there are still some areas to be improved for existing NAS in remote-sensing field. In this article, we propose a random topology and random multiscale mapping (RTRMM) method to generate a multiscale and lightweight architecture for remote-sensing image recognition. First, a random topology generator generates the topology through random graph. Second, during the experiment, we find remote-sensing image features extracted by a multiscale network are more appropriate, compared with features extracted by a single-scale model. Nevertheless, the complexity inevitably increases with the introduction of a multiscale concept. Consequently, we design a variable search space consisting of decomposition convolution units under the guidance of mathematical analysis. The mapping of each neuron is then determined by a random multiscale mapping sampler. After that, we assemble the topology and mappings into blocks and construct three RTRMM models. Experiments on four scene classification datasets confirm the feature extraction capability and lightweight performance of RTRMM models. Moreover, we also observe that our approach achieves a better tradeoff between floating-point operations (FLOPs) and accuracy than some current well-behaved methods. Furthermore, the results on Vaihingen dataset verify the high feature-transfer capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单的尔风完成签到 ,获得积分10
10秒前
ding应助开心努力毕业版采纳,获得10
10秒前
18秒前
科研通AI2S应助安静鸽哥采纳,获得10
18秒前
22秒前
23秒前
26秒前
布通发布了新的文献求助30
28秒前
陶兜兜完成签到,获得积分10
38秒前
安静的磬发布了新的文献求助10
39秒前
科研通AI2S应助安静的磬采纳,获得10
45秒前
科研通AI2S应助陶兜兜采纳,获得10
1分钟前
苗条青槐完成签到 ,获得积分10
1分钟前
支觅露完成签到 ,获得积分10
1分钟前
CipherSage应助蝈蝈采纳,获得30
1分钟前
ooooyasumi完成签到,获得积分10
1分钟前
1分钟前
1分钟前
NexusExplorer应助吵吵robot采纳,获得10
2分钟前
2分钟前
姚老表完成签到,获得积分10
2分钟前
2分钟前
LU完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
bkagyin应助KSung采纳,获得10
3分钟前
体贴问丝完成签到 ,获得积分10
3分钟前
3分钟前
KSung发布了新的文献求助10
3分钟前
桃园奈奈露完成签到,获得积分10
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
隐形曼青应助科研通管家采纳,获得10
3分钟前
Jasper应助科研通管家采纳,获得10
3分钟前
英勇背包完成签到,获得积分10
3分钟前
无名完成签到,获得积分10
3分钟前
李健应助bosslin采纳,获得10
4分钟前
务实怀柔完成签到 ,获得积分10
4分钟前
4分钟前
hayek完成签到,获得积分10
4分钟前
4分钟前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068019
求助须知:如何正确求助?哪些是违规求助? 2722010
关于积分的说明 7475912
捐赠科研通 2369097
什么是DOI,文献DOI怎么找? 1256116
科研通“疑难数据库(出版商)”最低求助积分说明 609454
版权声明 596795