Random Topology and Random Multiscale Mapping: An Automated Design of Multiscale and Lightweight Neural Network for Remote-Sensing Image Recognition

计算机科学 卷积神经网络 拓扑(电路) 合成孔径雷达 上下文图像分类 网络拓扑 特征提取 人工智能 人工神经网络 特征(语言学) 模式识别(心理学) 算法 图像(数学) 操作系统 哲学 组合数学 语言学 数学
作者
Jihao Li,Martin Weinmann,Xian Sun,Wenhui Diao,Yingchao Feng,Kun Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:2
标识
DOI:10.1109/tgrs.2021.3102988
摘要

With the proposal of neural architecture search (NAS), automated network architecture design gradually becomes a new way in deep learning research. Due to its high capability regarding automated design, some pioneers have made an attempt to apply NAS in remote sensing and made some achievements, like 1-D/3-D Auto-convolutional neural network (CNN) and polarimetric synthetic aperture radar (PolSAR)-tailored Differentiable Architecture Search (PDAS). However, there are still some areas to be improved for existing NAS in remote-sensing field. In this article, we propose a random topology and random multiscale mapping (RTRMM) method to generate a multiscale and lightweight architecture for remote-sensing image recognition. First, a random topology generator generates the topology through random graph. Second, during the experiment, we find remote-sensing image features extracted by a multiscale network are more appropriate, compared with features extracted by a single-scale model. Nevertheless, the complexity inevitably increases with the introduction of a multiscale concept. Consequently, we design a variable search space consisting of decomposition convolution units under the guidance of mathematical analysis. The mapping of each neuron is then determined by a random multiscale mapping sampler. After that, we assemble the topology and mappings into blocks and construct three RTRMM models. Experiments on four scene classification datasets confirm the feature extraction capability and lightweight performance of RTRMM models. Moreover, we also observe that our approach achieves a better tradeoff between floating-point operations (FLOPs) and accuracy than some current well-behaved methods. Furthermore, the results on Vaihingen dataset verify the high feature-transfer capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助不安乐菱采纳,获得10
刚刚
ccalvintan发布了新的文献求助10
刚刚
小陆发布了新的文献求助10
1秒前
完美世界应助牛牛采纳,获得10
1秒前
YL完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
JWW发布了新的文献求助10
5秒前
5秒前
ykk完成签到,获得积分10
7秒前
可爱deyi发布了新的文献求助10
7秒前
8秒前
NexusExplorer应助坚果采纳,获得10
8秒前
小辣椒发布了新的文献求助10
9秒前
axin发布了新的文献求助10
9秒前
小陆完成签到,获得积分10
9秒前
猪猪hero发布了新的文献求助10
9秒前
XY完成签到,获得积分10
10秒前
10秒前
小猫laila发布了新的文献求助10
10秒前
10秒前
微风发布了新的文献求助10
10秒前
打滚完成签到,获得积分10
11秒前
老弟需要帮助完成签到,获得积分10
11秒前
黒子发布了新的文献求助20
11秒前
12秒前
XY发布了新的文献求助10
13秒前
无花果应助洁净斑马采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
13秒前
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971441
求助须知:如何正确求助?哪些是违规求助? 3516161
关于积分的说明 11181180
捐赠科研通 3251322
什么是DOI,文献DOI怎么找? 1795788
邀请新用户注册赠送积分活动 876026
科研通“疑难数据库(出版商)”最低求助积分说明 805228