已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Random Topology and Random Multiscale Mapping: An Automated Design of Multiscale and Lightweight Neural Network for Remote-Sensing Image Recognition

计算机科学 卷积神经网络 拓扑(电路) 合成孔径雷达 上下文图像分类 网络拓扑 特征提取 人工智能 人工神经网络 特征(语言学) 模式识别(心理学) 算法 图像(数学) 操作系统 哲学 组合数学 语言学 数学
作者
Jihao Li,Martin Weinmann,Xian Sun,Wenhui Diao,Yingchao Feng,Kun Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:2
标识
DOI:10.1109/tgrs.2021.3102988
摘要

With the proposal of neural architecture search (NAS), automated network architecture design gradually becomes a new way in deep learning research. Due to its high capability regarding automated design, some pioneers have made an attempt to apply NAS in remote sensing and made some achievements, like 1-D/3-D Auto-convolutional neural network (CNN) and polarimetric synthetic aperture radar (PolSAR)-tailored Differentiable Architecture Search (PDAS). However, there are still some areas to be improved for existing NAS in remote-sensing field. In this article, we propose a random topology and random multiscale mapping (RTRMM) method to generate a multiscale and lightweight architecture for remote-sensing image recognition. First, a random topology generator generates the topology through random graph. Second, during the experiment, we find remote-sensing image features extracted by a multiscale network are more appropriate, compared with features extracted by a single-scale model. Nevertheless, the complexity inevitably increases with the introduction of a multiscale concept. Consequently, we design a variable search space consisting of decomposition convolution units under the guidance of mathematical analysis. The mapping of each neuron is then determined by a random multiscale mapping sampler. After that, we assemble the topology and mappings into blocks and construct three RTRMM models. Experiments on four scene classification datasets confirm the feature extraction capability and lightweight performance of RTRMM models. Moreover, we also observe that our approach achieves a better tradeoff between floating-point operations (FLOPs) and accuracy than some current well-behaved methods. Furthermore, the results on Vaihingen dataset verify the high feature-transfer capability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
惕守应助Pepsi采纳,获得10
刚刚
Slhy完成签到 ,获得积分10
1秒前
1秒前
1秒前
柒玖应助高贵的煎饼采纳,获得10
1秒前
2秒前
小王要努力完成签到,获得积分10
3秒前
3秒前
3秒前
Liang完成签到,获得积分10
3秒前
英俊的铭应助ANDW采纳,获得10
4秒前
4秒前
小二郎应助赵晶晶采纳,获得10
5秒前
6秒前
7秒前
小白菜发布了新的文献求助10
9秒前
9秒前
听宇发布了新的文献求助30
10秒前
乐乐应助Sylvia采纳,获得30
11秒前
13秒前
Lin完成签到,获得积分10
13秒前
林希希发布了新的文献求助10
16秒前
斯文败类应助Xy采纳,获得10
16秒前
斯文败类应助凡迪亚比采纳,获得20
17秒前
Ava应助单纯采纳,获得10
17秒前
ANDW发布了新的文献求助10
18秒前
李某某应助ceeray23采纳,获得30
18秒前
18秒前
22秒前
FashionBoy应助nicholas采纳,获得10
23秒前
昏睡的蟠桃应助ceeray23采纳,获得20
23秒前
XiHan发布了新的文献求助10
25秒前
26秒前
天天快乐应助儒雅猕猴桃采纳,获得10
28秒前
28秒前
Xy完成签到,获得积分20
28秒前
30秒前
30秒前
Walden完成签到,获得积分10
30秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590005
求助须知:如何正确求助?哪些是违规求助? 4674464
关于积分的说明 14794012
捐赠科研通 4629754
什么是DOI,文献DOI怎么找? 2532486
邀请新用户注册赠送积分活动 1501175
关于科研通互助平台的介绍 1468533