多金属氧酸盐
碳纳米管
材料科学
油藏计算
水准点(测量)
复合数
纳米技术
基质(水族馆)
分子动力学
计算机科学
复合材料
人工神经网络
化学
地质学
循环神经网络
计算化学
催化作用
机器学习
海洋学
生物化学
大地测量学
作者
Shuo Wu,Wenli Zhou,Kaiqiang Wen,Chengzhu Li,Qingfeng Gong
标识
DOI:10.1109/nems51815.2021.9451290
摘要
Physical reservoir computing (RC) is a recently introduced framework for information processing using the complex dynamics of physical systems. In this paper, a physical reservoir based on a molecular network of polyoxometalate (POM) decorated single-walled carbon nanotubes (SWCNT) with PBMA composite is fabricated. By the lab-built hardware platform, we experimentally demonstrate its excellent performance in a time series prediction benchmark with large short-term memory capacity (MC), indicating SWCNT/POM network as a promising substrate for reservoir computing because abundant inner charge and discharge in junctions leading to special electron transport characteristics that make rich dynamic and high-dimensional mapping properties appear in the POM-decorated SWCNT composite structure.
科研通智能强力驱动
Strongly Powered by AbleSci AI