已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

[Single-molecule electrophoresis: renewed understanding of nanopore electrochemistry].

纳米孔 化学 电泳 毛细管电泳 溶氧素 电动现象 电场 纳米技术 分子 生物分子 分析化学(期刊) 分析物 电解质 化学物理 材料科学 色谱法 生物化学 物理 有机化学 基因 量子力学 毒力
作者
Weiwei Zhang,Yi‐Lun Ying,Yi‐Tao Long
出处
期刊:Chinese Journal of Chromatography 卷期号:38 (9): 993-998 被引量:1
标识
DOI:10.3724/sp.j.1123.2020.05001
摘要

This study aims to understand nanopore technology from the standpoint of capillary separation. The nanopore electrochemical measurements could be regarded as molecule Similar to the case of capillary electrophoresis, the single target molecules migrate inside a nanopore under an external electric field. The recognition ability of the nanopore mainly depends on the charge, shape, and size of the target molecules under the electric force. The confined space of an Aerolysin nanopore matches the size of single biomolecule, while the amino acid residues along the inner wall of the nanopore facilitate electrokinetic regulation inside the nanopore. Under the applied voltage, each molecule enters the nanopore, generating the characteristic migration velocity and trajectory. Therefore, statistical analysis of the current amplitude, duration, frequency, and shape of the electrochemical signals would help differentiate and identify a single analyte from the mixture. Herein, we used an Aerolysin nanopore for identifying the oligonucleotides of 5'-CAA-3' (CA2), 5'-CAAA-3' (CA3), and 5'-CAAAA-3' (CA4), which differ in length only by one nucleotide, as the model system to demonstrate electrophoresis. The diameter of the Aerolysin nanopore is around 1 nm, and the pore length is approximately 10 nm. Under an applied voltage of 80 mV, the nanopore experiences a high electric field strength of about 80 kV/cm. The phosphate groups of the nucleotides carry negative charges in an electrolyte buffer solution of 1.0 mol/L KCl, at pH 8. Therefore, CA2, CA3, and CA4 carry 2, 3, and 4 negative charges, respectively. During nanopore sensing, CA2, CA3, and CA4 are subjected to electrophoretic forces and thus move inside the nanopore. Because the Aerolysin nanopore is anion selective, the direction of electroosmotic flow through the nanopore is consistent with the anion flow direction. Under the combined effects of the electrophoretic force and electroosmotic flow, CA2, CA3, CA4 will transverse through the Aerolysin nanopore at different migration velocities. Note that the oligonucleotide shows strong electrostatic interaction with the two sensitive regions of Aerolysin, which comprises polar amino acids around R220 and K238. The strong interaction between the sensitive region of Aerolysin and the analyte would further modulate the translocation of oligonucleotides. Therefore, each oligonucleotide follows a different migration trajectory as it individually transverses through the nanopore. The migration speed and migration trajectory are recorded as ionic blockages in nanopore electrochemistry. The scatter plots of the blockage current and blockage duration of the mixed sample of CA2, CA3, and CA4 show three characteristic distributions assigned to each type of oligonucleotide. Since the net charge increases with increasing length of the oligonucleotide, CA3 and CA4 experience a stronger electrophoretic force than does CA2 inside the nanopore, leading to higher migration velocity. Therefore, the blockage duration of CA3 and CA4 is 5 times longer than that of CA2. By Gaussian fitting, the fitted blockage currents of CA2, CA3, and CA4 are 20.7, 15.7, and 12.7 pA, respectively. Similar to our previous results, the blockage current increases with the chain length when the oligonucleotides comprise not more than 14 nucleotides. Therefore, nanopore-based allows for the electrochemical identification of CA2, CA3, and CA4 that differ in a length by only one nucleotide. Understanding the single-molecule electrophoresis concept would promote the application of electrochemically confined effects in separation. The combination of with a microfluidic system and a nanopore array is expected to aid the separation and identification of single molecules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
4秒前
南星完成签到 ,获得积分10
4秒前
李明完成签到 ,获得积分10
5秒前
xxfsx应助周周周采纳,获得10
5秒前
LLLucen发布了新的文献求助10
6秒前
Drwenlu完成签到,获得积分10
8秒前
9秒前
10秒前
sss完成签到,获得积分10
10秒前
我是老大应助win采纳,获得10
11秒前
斯文明杰发布了新的文献求助10
13秒前
13秒前
后陡门爱神完成签到 ,获得积分10
13秒前
土墙完成签到,获得积分10
13秒前
anders完成签到 ,获得积分10
13秒前
zzz发布了新的文献求助10
14秒前
Kirito发布了新的文献求助10
14秒前
16秒前
滴嘟滴嘟完成签到 ,获得积分10
17秒前
土墙发布了新的文献求助10
18秒前
crane完成签到,获得积分10
21秒前
苗条的小蜜蜂完成签到 ,获得积分10
21秒前
周周周完成签到,获得积分10
22秒前
ffjx完成签到,获得积分10
24秒前
土豪的摩托完成签到 ,获得积分10
25秒前
wanci应助斯文明杰采纳,获得10
25秒前
27秒前
redstone完成签到,获得积分10
27秒前
1111完成签到 ,获得积分10
29秒前
renee_yok完成签到 ,获得积分10
29秒前
cjh关闭了cjh文献求助
30秒前
31秒前
德国克大夫完成签到,获得积分10
31秒前
32秒前
阿茗完成签到 ,获得积分10
32秒前
34秒前
姜旭阳完成签到,获得积分20
35秒前
久久丫完成签到 ,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482112
求助须知:如何正确求助?哪些是违规求助? 4583088
关于积分的说明 14388421
捐赠科研通 4511951
什么是DOI,文献DOI怎么找? 2472648
邀请新用户注册赠送积分活动 1458905
关于科研通互助平台的介绍 1432309