[Single-molecule electrophoresis: renewed understanding of nanopore electrochemistry].

纳米孔 化学 电泳 毛细管电泳 溶氧素 电动现象 电场 纳米技术 分子 生物分子 分析化学(期刊) 分析物 电解质 化学物理 材料科学 色谱法 生物化学 物理 有机化学 基因 量子力学 毒力
作者
Weiwei Zhang,Yi‐Lun Ying,Yi‐Tao Long
出处
期刊:Chinese Journal of Chromatography 卷期号:38 (9): 993-998 被引量:1
标识
DOI:10.3724/sp.j.1123.2020.05001
摘要

This study aims to understand nanopore technology from the standpoint of capillary separation. The nanopore electrochemical measurements could be regarded as molecule Similar to the case of capillary electrophoresis, the single target molecules migrate inside a nanopore under an external electric field. The recognition ability of the nanopore mainly depends on the charge, shape, and size of the target molecules under the electric force. The confined space of an Aerolysin nanopore matches the size of single biomolecule, while the amino acid residues along the inner wall of the nanopore facilitate electrokinetic regulation inside the nanopore. Under the applied voltage, each molecule enters the nanopore, generating the characteristic migration velocity and trajectory. Therefore, statistical analysis of the current amplitude, duration, frequency, and shape of the electrochemical signals would help differentiate and identify a single analyte from the mixture. Herein, we used an Aerolysin nanopore for identifying the oligonucleotides of 5'-CAA-3' (CA2), 5'-CAAA-3' (CA3), and 5'-CAAAA-3' (CA4), which differ in length only by one nucleotide, as the model system to demonstrate electrophoresis. The diameter of the Aerolysin nanopore is around 1 nm, and the pore length is approximately 10 nm. Under an applied voltage of 80 mV, the nanopore experiences a high electric field strength of about 80 kV/cm. The phosphate groups of the nucleotides carry negative charges in an electrolyte buffer solution of 1.0 mol/L KCl, at pH 8. Therefore, CA2, CA3, and CA4 carry 2, 3, and 4 negative charges, respectively. During nanopore sensing, CA2, CA3, and CA4 are subjected to electrophoretic forces and thus move inside the nanopore. Because the Aerolysin nanopore is anion selective, the direction of electroosmotic flow through the nanopore is consistent with the anion flow direction. Under the combined effects of the electrophoretic force and electroosmotic flow, CA2, CA3, CA4 will transverse through the Aerolysin nanopore at different migration velocities. Note that the oligonucleotide shows strong electrostatic interaction with the two sensitive regions of Aerolysin, which comprises polar amino acids around R220 and K238. The strong interaction between the sensitive region of Aerolysin and the analyte would further modulate the translocation of oligonucleotides. Therefore, each oligonucleotide follows a different migration trajectory as it individually transverses through the nanopore. The migration speed and migration trajectory are recorded as ionic blockages in nanopore electrochemistry. The scatter plots of the blockage current and blockage duration of the mixed sample of CA2, CA3, and CA4 show three characteristic distributions assigned to each type of oligonucleotide. Since the net charge increases with increasing length of the oligonucleotide, CA3 and CA4 experience a stronger electrophoretic force than does CA2 inside the nanopore, leading to higher migration velocity. Therefore, the blockage duration of CA3 and CA4 is 5 times longer than that of CA2. By Gaussian fitting, the fitted blockage currents of CA2, CA3, and CA4 are 20.7, 15.7, and 12.7 pA, respectively. Similar to our previous results, the blockage current increases with the chain length when the oligonucleotides comprise not more than 14 nucleotides. Therefore, nanopore-based allows for the electrochemical identification of CA2, CA3, and CA4 that differ in a length by only one nucleotide. Understanding the single-molecule electrophoresis concept would promote the application of electrochemically confined effects in separation. The combination of with a microfluidic system and a nanopore array is expected to aid the separation and identification of single molecules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一阳发布了新的文献求助10
1秒前
在水一方应助tang采纳,获得10
1秒前
1秒前
段段完成签到,获得积分10
1秒前
丘比特应助ZZL采纳,获得10
1秒前
1秒前
科研通AI6应助徐向成采纳,获得10
1秒前
1秒前
冷静的半梦发布了新的文献求助200
2秒前
2秒前
lele发布了新的文献求助10
2秒前
4秒前
斯文败类应助魔幻安筠采纳,获得10
4秒前
Zpk发布了新的文献求助10
4秒前
NexusExplorer应助szj采纳,获得100
4秒前
石榴发布了新的文献求助10
5秒前
桃子味完成签到,获得积分10
5秒前
5秒前
5秒前
魔女完成签到,获得积分10
7秒前
李健的小迷弟应助enen采纳,获得10
7秒前
FashionBoy应助一阳采纳,获得10
7秒前
8秒前
汉堡9999号完成签到,获得积分10
9秒前
10秒前
10秒前
自然冥幽完成签到,获得积分10
11秒前
11秒前
taotao完成签到,获得积分10
11秒前
Dasha完成签到,获得积分10
12秒前
斗罗大陆发布了新的文献求助10
12秒前
13秒前
浮游应助jie采纳,获得10
13秒前
慎獨发布了新的文献求助10
13秒前
阿尔芒果皮完成签到 ,获得积分20
14秒前
鑫问完成签到,获得积分10
14秒前
14秒前
15秒前
蔡蔡发布了新的文献求助10
15秒前
16秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205400
求助须知:如何正确求助?哪些是违规求助? 4384092
关于积分的说明 13652042
捐赠科研通 4242237
什么是DOI,文献DOI怎么找? 2327262
邀请新用户注册赠送积分活动 1325047
关于科研通互助平台的介绍 1277269