[Single-molecule electrophoresis: renewed understanding of nanopore electrochemistry].

纳米孔 化学 电泳 毛细管电泳 溶氧素 电动现象 电场 纳米技术 分子 生物分子 分析化学(期刊) 分析物 电解质 化学物理 材料科学 色谱法 生物化学 物理 有机化学 基因 量子力学 毒力
作者
Weiwei Zhang,Yi‐Lun Ying,Yi‐Tao Long
出处
期刊:Chinese Journal of Chromatography 卷期号:38 (9): 993-998 被引量:1
标识
DOI:10.3724/sp.j.1123.2020.05001
摘要

This study aims to understand nanopore technology from the standpoint of capillary separation. The nanopore electrochemical measurements could be regarded as molecule Similar to the case of capillary electrophoresis, the single target molecules migrate inside a nanopore under an external electric field. The recognition ability of the nanopore mainly depends on the charge, shape, and size of the target molecules under the electric force. The confined space of an Aerolysin nanopore matches the size of single biomolecule, while the amino acid residues along the inner wall of the nanopore facilitate electrokinetic regulation inside the nanopore. Under the applied voltage, each molecule enters the nanopore, generating the characteristic migration velocity and trajectory. Therefore, statistical analysis of the current amplitude, duration, frequency, and shape of the electrochemical signals would help differentiate and identify a single analyte from the mixture. Herein, we used an Aerolysin nanopore for identifying the oligonucleotides of 5'-CAA-3' (CA2), 5'-CAAA-3' (CA3), and 5'-CAAAA-3' (CA4), which differ in length only by one nucleotide, as the model system to demonstrate electrophoresis. The diameter of the Aerolysin nanopore is around 1 nm, and the pore length is approximately 10 nm. Under an applied voltage of 80 mV, the nanopore experiences a high electric field strength of about 80 kV/cm. The phosphate groups of the nucleotides carry negative charges in an electrolyte buffer solution of 1.0 mol/L KCl, at pH 8. Therefore, CA2, CA3, and CA4 carry 2, 3, and 4 negative charges, respectively. During nanopore sensing, CA2, CA3, and CA4 are subjected to electrophoretic forces and thus move inside the nanopore. Because the Aerolysin nanopore is anion selective, the direction of electroosmotic flow through the nanopore is consistent with the anion flow direction. Under the combined effects of the electrophoretic force and electroosmotic flow, CA2, CA3, CA4 will transverse through the Aerolysin nanopore at different migration velocities. Note that the oligonucleotide shows strong electrostatic interaction with the two sensitive regions of Aerolysin, which comprises polar amino acids around R220 and K238. The strong interaction between the sensitive region of Aerolysin and the analyte would further modulate the translocation of oligonucleotides. Therefore, each oligonucleotide follows a different migration trajectory as it individually transverses through the nanopore. The migration speed and migration trajectory are recorded as ionic blockages in nanopore electrochemistry. The scatter plots of the blockage current and blockage duration of the mixed sample of CA2, CA3, and CA4 show three characteristic distributions assigned to each type of oligonucleotide. Since the net charge increases with increasing length of the oligonucleotide, CA3 and CA4 experience a stronger electrophoretic force than does CA2 inside the nanopore, leading to higher migration velocity. Therefore, the blockage duration of CA3 and CA4 is 5 times longer than that of CA2. By Gaussian fitting, the fitted blockage currents of CA2, CA3, and CA4 are 20.7, 15.7, and 12.7 pA, respectively. Similar to our previous results, the blockage current increases with the chain length when the oligonucleotides comprise not more than 14 nucleotides. Therefore, nanopore-based allows for the electrochemical identification of CA2, CA3, and CA4 that differ in a length by only one nucleotide. Understanding the single-molecule electrophoresis concept would promote the application of electrochemically confined effects in separation. The combination of with a microfluidic system and a nanopore array is expected to aid the separation and identification of single molecules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
未见山完成签到,获得积分10
1秒前
打打应助ZXL采纳,获得10
2秒前
炸毛关注了科研通微信公众号
2秒前
钇铯发布了新的文献求助10
3秒前
123456完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
5秒前
奶油橘子发布了新的文献求助10
6秒前
8秒前
大红先生发布了新的文献求助20
8秒前
dada发布了新的文献求助10
9秒前
Miller应助felix采纳,获得10
10秒前
JD.发布了新的文献求助10
11秒前
丑八怪发布了新的文献求助10
11秒前
被划分发布了新的文献求助10
12秒前
12秒前
12秒前
kento应助科研通管家采纳,获得150
12秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
子车茗应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
Noel应助科研通管家采纳,获得50
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
ding应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得50
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得50
13秒前
情怀应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
聪明的破茧完成签到,获得积分10
14秒前
打打应助BioRick采纳,获得10
15秒前
甜甜乌冬面完成签到,获得积分10
15秒前
辣辣发布了新的文献求助10
16秒前
16秒前
爆米花应助muqianyaowanan采纳,获得10
17秒前
英俊的铭应助JD.采纳,获得10
17秒前
丑八怪完成签到,获得积分10
18秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808909
关于积分的说明 7879293
捐赠科研通 2467387
什么是DOI,文献DOI怎么找? 1313431
科研通“疑难数据库(出版商)”最低求助积分说明 630398
版权声明 601919