Consensus ensemble neural network multitarget model of RAGE inhibitory activity of chemical compounds

愤怒(情绪) 人工神经网络 人工智能 计算机科学 机器学习 感知器 抑制性突触后电位 信号转导 计算生物学 化学 神经科学 生物 生物化学
作者
Pavel Vassiliev,M. A. Perfilev,Anna Koroleva
出处
期刊:Biomeditsinskaia khimiia 卷期号:67 (3): 268-277 被引量:1
标识
DOI:10.18097/pbmc20216703268
摘要

RAGE signal transduction via the RAGE-NF-κB signaling pathway is one of the mechanisms of inflammatory reactions that cause severe complications in diabetes mellitus. RAGE inhibitors are promising pharmacological compounds that require the development of new predictive models. Based on the methodology of artificial neural networks, consensus ensemble neural network multitarget model has been constructed. This model describes the dependence of the level of the RAGE inhibitory activity on the affinity of compounds for 34 target proteins of the RAGE-NF-κB signal pathway. For this purpose an expanded database of valid three-dimensional models of target proteins of the RAGE-NF-κB signal chain was created on the basis of a previously created database of three-dimensional models of relevant biotargets. Ensemble molecular docking of known RAGE inhibitors from a verified database into the sites of added models of target proteins was performed, and the minimum docking energies for each compound in relation to each target were determined. An extended training set for neural network modeling was formed. Using seven variants of sampling by the method of artificial multilayer perceptron neural networks, three ensembles of classification decision rules were constructed to predict three level of the RAGE-inhibitory activity based on the calculated affinity of compounds for significant target proteins of the RAGE-NF-κB signaling pathway. Using a simple consensus of the second level, the predictive ability of the created model was assessed and its high accuracy and statistical significance were shown. The resultant consensus ensemble neural network multitarget model has been used for virtual screening of new derivatives of different chemical classes. The most promising substances have been synthesized and sent for experimental studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
周晶晶完成签到,获得积分10
1秒前
3秒前
小马甲应助苹果雨旋采纳,获得10
4秒前
了晨发布了新的文献求助10
4秒前
4秒前
4秒前
婧婧完成签到,获得积分10
5秒前
5秒前
情怀应助freeway采纳,获得10
6秒前
谦让大娘完成签到,获得积分10
6秒前
今天也要ssstudy完成签到,获得积分10
6秒前
7秒前
liziming完成签到,获得积分10
7秒前
7秒前
8秒前
凯伢发布了新的文献求助10
8秒前
yam发布了新的文献求助30
8秒前
小钱全发布了新的文献求助30
8秒前
something发布了新的文献求助10
8秒前
9秒前
10秒前
若杉完成签到 ,获得积分10
10秒前
xsk发布了新的文献求助10
10秒前
Sakura发布了新的文献求助10
10秒前
Liooo完成签到 ,获得积分10
11秒前
11秒前
傅飞风发布了新的文献求助10
11秒前
hometown发布了新的文献求助10
12秒前
12秒前
13秒前
小钱全完成签到,获得积分10
14秒前
14秒前
15秒前
婧婧发布了新的文献求助10
15秒前
zxz发布了新的文献求助10
15秒前
momo应助慢慢采纳,获得10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978526
求助须知:如何正确求助?哪些是违规求助? 3522634
关于积分的说明 11214133
捐赠科研通 3260065
什么是DOI,文献DOI怎么找? 1799744
邀请新用户注册赠送积分活动 878642
科研通“疑难数据库(出版商)”最低求助积分说明 807002