已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Consensus ensemble neural network multitarget model of RAGE inhibitory activity of chemical compounds

愤怒(情绪) 人工神经网络 人工智能 计算机科学 机器学习 感知器 抑制性突触后电位 信号转导 计算生物学 化学 神经科学 生物 生物化学
作者
Pavel Vassiliev,M. A. Perfilev,Anna Koroleva
出处
期刊:Biomeditsinskaia khimiia 卷期号:67 (3): 268-277 被引量:1
标识
DOI:10.18097/pbmc20216703268
摘要

RAGE signal transduction via the RAGE-NF-κB signaling pathway is one of the mechanisms of inflammatory reactions that cause severe complications in diabetes mellitus. RAGE inhibitors are promising pharmacological compounds that require the development of new predictive models. Based on the methodology of artificial neural networks, consensus ensemble neural network multitarget model has been constructed. This model describes the dependence of the level of the RAGE inhibitory activity on the affinity of compounds for 34 target proteins of the RAGE-NF-κB signal pathway. For this purpose an expanded database of valid three-dimensional models of target proteins of the RAGE-NF-κB signal chain was created on the basis of a previously created database of three-dimensional models of relevant biotargets. Ensemble molecular docking of known RAGE inhibitors from a verified database into the sites of added models of target proteins was performed, and the minimum docking energies for each compound in relation to each target were determined. An extended training set for neural network modeling was formed. Using seven variants of sampling by the method of artificial multilayer perceptron neural networks, three ensembles of classification decision rules were constructed to predict three level of the RAGE-inhibitory activity based on the calculated affinity of compounds for significant target proteins of the RAGE-NF-κB signaling pathway. Using a simple consensus of the second level, the predictive ability of the created model was assessed and its high accuracy and statistical significance were shown. The resultant consensus ensemble neural network multitarget model has been used for virtual screening of new derivatives of different chemical classes. The most promising substances have been synthesized and sent for experimental studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
dominic12361发布了新的文献求助10
2秒前
潇潇雨歇发布了新的文献求助10
3秒前
深情安青应助xin采纳,获得10
3秒前
3秒前
Rhythm发布了新的文献求助10
4秒前
Devil发布了新的文献求助10
5秒前
Dr_ZHONG发布了新的文献求助30
5秒前
李爱国应助细心盼晴采纳,获得10
5秒前
彭于晏应助LJJ采纳,获得10
5秒前
完美的小凝完成签到 ,获得积分10
8秒前
10秒前
机智的小帅哥完成签到,获得积分10
11秒前
今后应助黄卡卡采纳,获得10
11秒前
11秒前
领导范儿应助zz采纳,获得10
13秒前
13秒前
sweet驳回了小鱼应助
13秒前
13秒前
14秒前
慕青应助廖书香采纳,获得10
14秒前
14秒前
15秒前
15秒前
YvonneL发布了新的文献求助10
15秒前
嘎嘎发布了新的文献求助10
16秒前
3210592完成签到,获得积分10
17秒前
ninomae发布了新的文献求助10
18秒前
形心1431发布了新的文献求助10
18秒前
小二郎应助anmds采纳,获得30
19秒前
冷静尔芙发布了新的文献求助10
20秒前
思源应助小城故事和冰雨采纳,获得10
20秒前
所所应助yunyun采纳,获得10
21秒前
YvonneL完成签到,获得积分20
22秒前
22秒前
WIN发布了新的文献求助10
23秒前
年轻馒头完成签到 ,获得积分10
23秒前
钟梦萍关注了科研通微信公众号
25秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4888162
求助须知:如何正确求助?哪些是违规求助? 4172807
关于积分的说明 12950670
捐赠科研通 3933806
什么是DOI,文献DOI怎么找? 2158530
邀请新用户注册赠送积分活动 1176733
关于科研通互助平台的介绍 1081100