Consensus ensemble neural network multitarget model of RAGE inhibitory activity of chemical compounds

愤怒(情绪) 人工神经网络 人工智能 计算机科学 机器学习 感知器 抑制性突触后电位 信号转导 计算生物学 化学 神经科学 生物 生物化学
作者
Pavel Vassiliev,M. A. Perfilev,Anna Koroleva
出处
期刊:Biomeditsinskaia khimiia 卷期号:67 (3): 268-277 被引量:1
标识
DOI:10.18097/pbmc20216703268
摘要

RAGE signal transduction via the RAGE-NF-κB signaling pathway is one of the mechanisms of inflammatory reactions that cause severe complications in diabetes mellitus. RAGE inhibitors are promising pharmacological compounds that require the development of new predictive models. Based on the methodology of artificial neural networks, consensus ensemble neural network multitarget model has been constructed. This model describes the dependence of the level of the RAGE inhibitory activity on the affinity of compounds for 34 target proteins of the RAGE-NF-κB signal pathway. For this purpose an expanded database of valid three-dimensional models of target proteins of the RAGE-NF-κB signal chain was created on the basis of a previously created database of three-dimensional models of relevant biotargets. Ensemble molecular docking of known RAGE inhibitors from a verified database into the sites of added models of target proteins was performed, and the minimum docking energies for each compound in relation to each target were determined. An extended training set for neural network modeling was formed. Using seven variants of sampling by the method of artificial multilayer perceptron neural networks, three ensembles of classification decision rules were constructed to predict three level of the RAGE-inhibitory activity based on the calculated affinity of compounds for significant target proteins of the RAGE-NF-κB signaling pathway. Using a simple consensus of the second level, the predictive ability of the created model was assessed and its high accuracy and statistical significance were shown. The resultant consensus ensemble neural network multitarget model has been used for virtual screening of new derivatives of different chemical classes. The most promising substances have been synthesized and sent for experimental studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liu发布了新的文献求助10
1秒前
vision完成签到,获得积分10
1秒前
DonglinHe完成签到,获得积分10
1秒前
石狗西发布了新的文献求助10
1秒前
1秒前
sherry221发布了新的文献求助10
2秒前
JERRI发布了新的文献求助10
2秒前
占瑾瑜完成签到 ,获得积分20
2秒前
研友_VZG7GZ应助fjh采纳,获得10
3秒前
winnerbing完成签到,获得积分10
4秒前
科研通AI2S应助vision采纳,获得10
4秒前
菠萝炒饭完成签到,获得积分10
5秒前
6秒前
6秒前
Liu完成签到,获得积分20
7秒前
An.完成签到,获得积分10
8秒前
科研通AI2S应助haoaaa采纳,获得30
8秒前
共享精神应助无情山水采纳,获得10
8秒前
濮阳千易完成签到,获得积分10
10秒前
完美世界应助JERRI采纳,获得10
10秒前
11秒前
11秒前
11秒前
12秒前
DY完成签到,获得积分20
12秒前
llllll完成签到 ,获得积分10
13秒前
略略略发布了新的文献求助10
13秒前
科研通AI2S应助白告采纳,获得10
14秒前
14秒前
DY发布了新的文献求助10
15秒前
yyymmma发布了新的文献求助10
16秒前
典雅涵瑶完成签到,获得积分10
16秒前
Jenaloe发布了新的文献求助10
16秒前
刘小孩发布了新的文献求助10
16秒前
17秒前
肚子圆圆的完成签到 ,获得积分10
18秒前
yangzhang完成签到,获得积分10
18秒前
Ava应助winnerbing采纳,获得10
20秒前
21秒前
nsk完成签到,获得积分10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
The SAGE Handbook of Qualitative Research 800
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135055
求助须知:如何正确求助?哪些是违规求助? 2786078
关于积分的说明 7774957
捐赠科研通 2441899
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600825