已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor and Optimal Transport

计算机科学 股票交易 路由器 库存(枪支) 机器学习 变压器 股票市场 人工智能 数据挖掘 工程类 计算机网络 机械工程 古生物学 电气工程 电压 生物
作者
Hengxu Lin,Dong Zhou,Weiqing Liu,Jiang Bian
标识
DOI:10.1145/3447548.3467358
摘要

Successful quantitative investment usually relies on precise predictions of the future movement of the stock price. Recently, machine learning based solutions have shown their capacity to give more accurate stock prediction and become indispensable components in modern quantitative investment systems. However, the i.i.d. assumption behind existing methods is inconsistent with the existence of diverse trading patterns in the stock market, which inevitably limits their ability to achieve better stock prediction performance. In this paper, we propose a novel architecture, Temporal Routing Adaptor (TRA), to empower existing stock prediction models with the ability to model multiple stock trading patterns. Essentially, TRA is a lightweight module that consists of a set of independent predictors for learning multiple patterns as well as a router to dispatch samples to different predictors. Nevertheless, the lack of explicit pattern identifiers makes it quite challenging to train an effective TRA-based model. To tackle this challenge, we further design a learning algorithm based on Optimal Transport (OT) to obtain the optimal sample to predictor assignment and effectively optimize the router with such assignment through an auxiliary loss term. Experiments on the real-world stock ranking task show that compared to the state-of-the-art baselines, e.g., Attention LSTM and Transformer, the proposed method can improve information coefficient (IC) from 0.053 to 0.059 and 0.051 to 0.056 respectively. Our dataset and code used in this work are publicly available2: https://github.com/microsoft/qlib.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xu1227完成签到,获得积分10
刚刚
tomato发布了新的文献求助10
3秒前
花花发布了新的文献求助10
3秒前
脑洞疼应助依依采纳,获得10
4秒前
4秒前
天天快乐应助默默采纳,获得10
5秒前
hilbertbo完成签到,获得积分20
5秒前
wstkkkkykk完成签到,获得积分10
8秒前
顾矜应助Bob采纳,获得30
8秒前
柘涵完成签到,获得积分20
8秒前
9秒前
蜡笔小z完成签到 ,获得积分10
9秒前
10秒前
11秒前
任无血完成签到 ,获得积分10
11秒前
14秒前
14秒前
18秒前
科研通AI6应助xinyuxie采纳,获得10
18秒前
无的完成签到,获得积分10
21秒前
lsl发布了新的文献求助10
21秒前
科研通AI6应助可耐的冰萍采纳,获得10
21秒前
上官若男应助123采纳,获得10
22秒前
科研通AI6应助留白的大脑采纳,获得10
25秒前
情怀应助阔达雨灵采纳,获得10
26秒前
搜集达人应助Jasmine采纳,获得10
26秒前
积极无敌完成签到 ,获得积分10
27秒前
28秒前
OpheliaWyy完成签到,获得积分10
30秒前
30秒前
luckyseven完成签到,获得积分10
30秒前
31秒前
Yian发布了新的文献求助30
32秒前
李爱国应助远志采纳,获得10
33秒前
33秒前
www发布了新的文献求助10
34秒前
37秒前
37秒前
37秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394402
求助须知:如何正确求助?哪些是违规求助? 4515551
关于积分的说明 14054852
捐赠科研通 4426835
什么是DOI,文献DOI怎么找? 2431517
邀请新用户注册赠送积分活动 1423661
关于科研通互助平台的介绍 1402599