Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor and Optimal Transport

计算机科学 股票交易 路由器 库存(枪支) 机器学习 变压器 股票市场 人工智能 数据挖掘 工程类 计算机网络 机械工程 古生物学 电气工程 电压 生物
作者
Hengxu Lin,Dong Zhou,Weiqing Liu,Jiang Bian
标识
DOI:10.1145/3447548.3467358
摘要

Successful quantitative investment usually relies on precise predictions of the future movement of the stock price. Recently, machine learning based solutions have shown their capacity to give more accurate stock prediction and become indispensable components in modern quantitative investment systems. However, the i.i.d. assumption behind existing methods is inconsistent with the existence of diverse trading patterns in the stock market, which inevitably limits their ability to achieve better stock prediction performance. In this paper, we propose a novel architecture, Temporal Routing Adaptor (TRA), to empower existing stock prediction models with the ability to model multiple stock trading patterns. Essentially, TRA is a lightweight module that consists of a set of independent predictors for learning multiple patterns as well as a router to dispatch samples to different predictors. Nevertheless, the lack of explicit pattern identifiers makes it quite challenging to train an effective TRA-based model. To tackle this challenge, we further design a learning algorithm based on Optimal Transport (OT) to obtain the optimal sample to predictor assignment and effectively optimize the router with such assignment through an auxiliary loss term. Experiments on the real-world stock ranking task show that compared to the state-of-the-art baselines, e.g., Attention LSTM and Transformer, the proposed method can improve information coefficient (IC) from 0.053 to 0.059 and 0.051 to 0.056 respectively. Our dataset and code used in this work are publicly available2: https://github.com/microsoft/qlib.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
典雅问寒应助迷路的煎蛋采纳,获得10
刚刚
刚刚
科研通AI2S应助刘浩然采纳,获得10
2秒前
3秒前
3秒前
经卿完成签到 ,获得积分10
3秒前
iking666完成签到,获得积分10
3秒前
brwen完成签到,获得积分10
4秒前
风吹而过完成签到 ,获得积分10
5秒前
荣枫完成签到,获得积分10
5秒前
6秒前
123完成签到,获得积分10
7秒前
耳机单蹦发布了新的文献求助10
7秒前
小梦完成签到,获得积分10
7秒前
Akim应助奇博士采纳,获得10
8秒前
Akim应助suise采纳,获得10
10秒前
白马爱毛驴完成签到,获得积分10
11秒前
姜sir完成签到 ,获得积分10
13秒前
14秒前
dylan0113发布了新的文献求助10
16秒前
16秒前
18秒前
科研通AI2S应助刘浩然采纳,获得10
18秒前
源孤律醒完成签到 ,获得积分10
18秒前
YYY发布了新的文献求助10
19秒前
太阳完成签到 ,获得积分10
21秒前
1111发布了新的文献求助20
23秒前
游泳的酸菜铺盖面完成签到,获得积分10
23秒前
Neltharion完成签到,获得积分10
24秒前
我不到啊完成签到,获得积分10
24秒前
yimuchenlin完成签到,获得积分10
24秒前
大眼睛土豆完成签到,获得积分10
25秒前
谨慎的凝丝完成签到 ,获得积分10
27秒前
lyn2023完成签到,获得积分10
28秒前
科研rain完成签到,获得积分10
28秒前
zhang完成签到,获得积分10
30秒前
suise完成签到,获得积分10
30秒前
笨笨蜜蜂完成签到,获得积分10
31秒前
31秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378722
求助须知:如何正确求助?哪些是违规求助? 4503127
关于积分的说明 14015166
捐赠科研通 4411843
什么是DOI,文献DOI怎么找? 2423519
邀请新用户注册赠送积分活动 1416462
关于科研通互助平台的介绍 1393901