Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor and Optimal Transport

计算机科学 股票交易 路由器 库存(枪支) 机器学习 变压器 股票市场 人工智能 数据挖掘 工程类 计算机网络 机械工程 古生物学 电气工程 电压 生物
作者
Hengxu Lin,Dong Zhou,Weiqing Liu,Jiang Bian
标识
DOI:10.1145/3447548.3467358
摘要

Successful quantitative investment usually relies on precise predictions of the future movement of the stock price. Recently, machine learning based solutions have shown their capacity to give more accurate stock prediction and become indispensable components in modern quantitative investment systems. However, the i.i.d. assumption behind existing methods is inconsistent with the existence of diverse trading patterns in the stock market, which inevitably limits their ability to achieve better stock prediction performance. In this paper, we propose a novel architecture, Temporal Routing Adaptor (TRA), to empower existing stock prediction models with the ability to model multiple stock trading patterns. Essentially, TRA is a lightweight module that consists of a set of independent predictors for learning multiple patterns as well as a router to dispatch samples to different predictors. Nevertheless, the lack of explicit pattern identifiers makes it quite challenging to train an effective TRA-based model. To tackle this challenge, we further design a learning algorithm based on Optimal Transport (OT) to obtain the optimal sample to predictor assignment and effectively optimize the router with such assignment through an auxiliary loss term. Experiments on the real-world stock ranking task show that compared to the state-of-the-art baselines, e.g., Attention LSTM and Transformer, the proposed method can improve information coefficient (IC) from 0.053 to 0.059 and 0.051 to 0.056 respectively. Our dataset and code used in this work are publicly available2: https://github.com/microsoft/qlib.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XMY完成签到 ,获得积分10
1秒前
是小段呀完成签到 ,获得积分10
1秒前
搜集达人应助正直的半梅采纳,获得10
2秒前
秋月黄完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
在水一方应助舒心盼海采纳,获得10
4秒前
4秒前
znt完成签到,获得积分20
5秒前
咖飞完成签到,获得积分10
5秒前
激昂的千秋完成签到,获得积分10
5秒前
5秒前
5秒前
小张同学完成签到,获得积分10
6秒前
刘均珺发布了新的文献求助10
6秒前
6秒前
廖丽文完成签到,获得积分20
7秒前
7秒前
无花果应助momowang采纳,获得10
7秒前
wise111发布了新的文献求助10
7秒前
8秒前
8秒前
FashionBoy应助spwan采纳,获得10
9秒前
ji发布了新的文献求助10
9秒前
大模型应助暴富采纳,获得10
9秒前
pepsisery完成签到,获得积分10
9秒前
傲娇如天发布了新的文献求助10
9秒前
涪城的涪发布了新的文献求助10
9秒前
寒来暑往发布了新的文献求助10
9秒前
Li完成签到,获得积分10
10秒前
852应助神勇的天问采纳,获得10
10秒前
10秒前
10秒前
znt发布了新的文献求助20
10秒前
柳行天完成签到 ,获得积分10
10秒前
10秒前
传奇3应助花海采纳,获得10
10秒前
芹菜发布了新的文献求助10
11秒前
ZZ完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410122
求助须知:如何正确求助?哪些是违规求助? 4527656
关于积分的说明 14112011
捐赠科研通 4442051
什么是DOI,文献DOI怎么找? 2437805
邀请新用户注册赠送积分活动 1429747
关于科研通互助平台的介绍 1407769