Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor and Optimal Transport

计算机科学 股票交易 路由器 库存(枪支) 机器学习 变压器 股票市场 人工智能 数据挖掘 工程类 计算机网络 机械工程 古生物学 电气工程 电压 生物
作者
Hengxu Lin,Dong Zhou,Weiqing Liu,Jiang Bian
标识
DOI:10.1145/3447548.3467358
摘要

Successful quantitative investment usually relies on precise predictions of the future movement of the stock price. Recently, machine learning based solutions have shown their capacity to give more accurate stock prediction and become indispensable components in modern quantitative investment systems. However, the i.i.d. assumption behind existing methods is inconsistent with the existence of diverse trading patterns in the stock market, which inevitably limits their ability to achieve better stock prediction performance. In this paper, we propose a novel architecture, Temporal Routing Adaptor (TRA), to empower existing stock prediction models with the ability to model multiple stock trading patterns. Essentially, TRA is a lightweight module that consists of a set of independent predictors for learning multiple patterns as well as a router to dispatch samples to different predictors. Nevertheless, the lack of explicit pattern identifiers makes it quite challenging to train an effective TRA-based model. To tackle this challenge, we further design a learning algorithm based on Optimal Transport (OT) to obtain the optimal sample to predictor assignment and effectively optimize the router with such assignment through an auxiliary loss term. Experiments on the real-world stock ranking task show that compared to the state-of-the-art baselines, e.g., Attention LSTM and Transformer, the proposed method can improve information coefficient (IC) from 0.053 to 0.059 and 0.051 to 0.056 respectively. Our dataset and code used in this work are publicly available2: https://github.com/microsoft/qlib.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助Dream采纳,获得10
刚刚
囚徒完成签到,获得积分10
刚刚
斯文败类应助陈佩chenpei采纳,获得10
1秒前
1秒前
Jouleken完成签到,获得积分0
1秒前
和谐的黄豆完成签到,获得积分10
2秒前
小林子发布了新的文献求助10
2秒前
2秒前
2秒前
Jim完成签到 ,获得积分10
2秒前
3秒前
兔子发布了新的文献求助10
4秒前
Yu完成签到,获得积分20
4秒前
奋斗慕凝完成签到 ,获得积分10
4秒前
酷波er应助starts采纳,获得10
5秒前
YuenYuen完成签到,获得积分10
5秒前
儒雅无剑发布了新的文献求助10
5秒前
松山小吏完成签到,获得积分10
5秒前
5秒前
AAA苦读发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
土豪的雅柔完成签到,获得积分10
7秒前
ddd发布了新的文献求助10
7秒前
简单的听寒完成签到,获得积分10
7秒前
7秒前
8秒前
科研通AI2S应助Haru采纳,获得30
8秒前
黑章鱼保罗完成签到,获得积分10
8秒前
文静谷秋完成签到,获得积分10
9秒前
Ttttt发布了新的文献求助10
10秒前
传奇3应助姚序东采纳,获得10
10秒前
10秒前
Sy发布了新的文献求助10
10秒前
DingShicong完成签到 ,获得积分10
10秒前
11秒前
聂落雁发布了新的文献求助10
11秒前
陈木子发布了新的文献求助10
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313