亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor and Optimal Transport

计算机科学 股票交易 路由器 库存(枪支) 机器学习 变压器 股票市场 人工智能 数据挖掘 工程类 计算机网络 机械工程 生物 电气工程 古生物学 电压
作者
Hengxu Lin,Dong Zhou,Weiqing Liu,Jiang Bian
标识
DOI:10.1145/3447548.3467358
摘要

Successful quantitative investment usually relies on precise predictions of the future movement of the stock price. Recently, machine learning based solutions have shown their capacity to give more accurate stock prediction and become indispensable components in modern quantitative investment systems. However, the i.i.d. assumption behind existing methods is inconsistent with the existence of diverse trading patterns in the stock market, which inevitably limits their ability to achieve better stock prediction performance. In this paper, we propose a novel architecture, Temporal Routing Adaptor (TRA), to empower existing stock prediction models with the ability to model multiple stock trading patterns. Essentially, TRA is a lightweight module that consists of a set of independent predictors for learning multiple patterns as well as a router to dispatch samples to different predictors. Nevertheless, the lack of explicit pattern identifiers makes it quite challenging to train an effective TRA-based model. To tackle this challenge, we further design a learning algorithm based on Optimal Transport (OT) to obtain the optimal sample to predictor assignment and effectively optimize the router with such assignment through an auxiliary loss term. Experiments on the real-world stock ranking task show that compared to the state-of-the-art baselines, e.g., Attention LSTM and Transformer, the proposed method can improve information coefficient (IC) from 0.053 to 0.059 and 0.051 to 0.056 respectively. Our dataset and code used in this work are publicly available2: https://github.com/microsoft/qlib.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助Maru采纳,获得10
刚刚
4秒前
10秒前
10秒前
Maru发布了新的文献求助10
14秒前
LMY1411完成签到,获得积分10
20秒前
Maru完成签到,获得积分10
21秒前
36秒前
TXZ06完成签到,获得积分10
37秒前
复杂不二发布了新的文献求助10
40秒前
42秒前
这个手刹不太灵完成签到 ,获得积分10
57秒前
JamesPei应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
57秒前
复杂不二完成签到,获得积分10
58秒前
1分钟前
1分钟前
1分钟前
2分钟前
万能图书馆应助gy采纳,获得30
2分钟前
34完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Swear完成签到 ,获得积分10
2分钟前
NPC关闭了NPC文献求助
3分钟前
3分钟前
3分钟前
4分钟前
Echo完成签到,获得积分10
4分钟前
4分钟前
和平使命应助chaxie采纳,获得10
5分钟前
5分钟前
chaxie完成签到,获得积分10
5分钟前
CodeCraft应助李子潭采纳,获得10
5分钟前
孙老师完成签到 ,获得积分10
5分钟前
5分钟前
天天快乐应助axiao采纳,获得10
5分钟前
早晚完成签到 ,获得积分10
5分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307395
求助须知:如何正确求助?哪些是违规求助? 2941022
关于积分的说明 8500219
捐赠科研通 2615423
什么是DOI,文献DOI怎么找? 1428873
科研通“疑难数据库(出版商)”最低求助积分说明 663595
邀请新用户注册赠送积分活动 648461