已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Double-wall ceramic nanolattices: Increased stiffness and recoverability by design

材料科学 脆性 刚度 桁架 陶瓷 叠加原理 结构工程 复合材料 壳体(结构) 有限元法 格子(音乐) 声学 工程类 数学 数学分析 物理
作者
Marianna Diamantopoulou,Thomas Tancogne‐Dejean,Jeffrey M. Wheeler,Dirk Mohr
出处
期刊:Materials & Design [Elsevier]
卷期号:208: 109928-109928 被引量:13
标识
DOI:10.1016/j.matdes.2021.109928
摘要

Lightweight ceramic nanolattices exhibiting high stiffness and good recoverability are obtained by leveraging base material size effects in combination with smart structural design. Here, the double-wall tube (DWT) lattice architecture is introduced to increase the stiffness of brittle nanolattices, while maintaining their recoverability. The DWT architecture consists of two nested simple-cubic hollow-truss nanolattices. The superposition of two nanolattices leads to a reduced wall thickness for a given relative density thereby preventing the built-up of large stresses at the cell wall level when crushing the lattices. In this work, DWT alumina nanolattices are fabricated and compressed in situ to demonstrate the improvement in recoverability with decreasing alumina wall thickness. The results from finite element simulations reveal that double-wall architectures are up to two times stiffer than their single wall counterparts of equal mass, suggesting that superior recoverability (thinner ceramic coatings) coupled with enhanced stiffness can be achieved. The DWT lattice is proposed as a new architecture to expand the design space of highly recoverable brittle nanolattices. The new double-wall design concept is expected to provide an efficient tool for improving the mechanical performance of shell-nanolattices in general including triply-periodic minimal surfaces.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QQQ发布了新的文献求助10
刚刚
1秒前
网络复杂发布了新的文献求助10
2秒前
大模型应助专注乐荷采纳,获得10
3秒前
3秒前
思源应助友好的鱼鱼采纳,获得10
4秒前
开心凌柏完成签到,获得积分10
5秒前
赫贞发布了新的文献求助10
7秒前
9秒前
yy发布了新的文献求助10
10秒前
11秒前
斯文败类应助Zyc采纳,获得10
11秒前
shjyang完成签到,获得积分0
11秒前
12秒前
吉里巴完成签到,获得积分10
13秒前
13秒前
igigi完成签到,获得积分20
14秒前
14秒前
紫涵妍妍妈妈完成签到,获得积分10
15秒前
乐生发布了新的文献求助20
15秒前
寒冷的断秋完成签到,获得积分10
15秒前
15秒前
Hanqi完成签到 ,获得积分10
16秒前
开心凌柏发布了新的文献求助10
16秒前
CipherSage应助迷路的睫毛膏采纳,获得10
16秒前
QQQ完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
21秒前
科目三应助科研通管家采纳,获得10
21秒前
Lucas应助科研通管家采纳,获得50
21秒前
科目三应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
所所应助科研通管家采纳,获得10
21秒前
Jasper应助科研通管家采纳,获得10
22秒前
hd完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663851
求助须知:如何正确求助?哪些是违规求助? 4853565
关于积分的说明 15106071
捐赠科研通 4822104
什么是DOI,文献DOI怎么找? 2581216
邀请新用户注册赠送积分活动 1535412
关于科研通互助平台的介绍 1493740