Prediction of dementia using diffusion tensor MRI measures: the OPTIMAL collaboration

痴呆 磁共振弥散成像 认知 医学 心理学 部分各向异性 内科学 心脏病学 物理医学与康复 磁共振成像 听力学 疾病 放射科 精神科
作者
Marco Egle,Saima Hilal,Anil M. Tuladhar,Lukas Pirpamer,Edith Hofer,Marco Duering,James Wason,Robin G. Morris,Martin Dichgans,Reinhold Schmidt,Daniel J. Tozer,Christopher Chen,Frank‐Erik de Leeuw,Hugh S. Markus
出处
期刊:Journal of Neurology, Neurosurgery, and Psychiatry [BMJ]
卷期号:93 (1): 14-23 被引量:21
标识
DOI:10.1136/jnnp-2021-326571
摘要

It has been suggested that diffusion tensor imaging (DTI) measures sensitive to white matter (WM) damage may predict future dementia risk not only in cerebral small vessel disease (SVD), but also in mild cognitive impairment. To determine whether DTI measures were associated with cognition cross-sectionally and predicted future dementia risk across the full range of SVD severity, we established the International OPtimising mulTImodal MRI markers for use as surrogate markers in trials of Vascular Cognitive Impairment due to cerebrAl small vesseL disease collaboration which included six cohorts.Among the six cohorts, prospective data with dementia incidences were available for three cohorts. The associations between six different DTI measures and cognition or dementia conversion were tested. The additional contribution to prediction of other MRI markers of SVD was also determined.The DTI measure mean diffusivity (MD) median correlated with cognition in all cohorts, demonstrating the contribution of WM damage to cognition. Adding MD median significantly improved the model fit compared to the clinical risk model alone and further increased in all single-centre SVD cohorts when adding conventional MRI measures. Baseline MD median predicted dementia conversion. In a study with severe SVD (SCANS) change in MD median also predicted dementia conversion. The area under the curve was best when employing a multimodal MRI model using both DTI measures and other MRI measures.Our results support a central role for WM alterations in dementia pathogenesis in all cohorts. DTI measures such as MD median may be a useful clinical risk predictor. The contribution of other MRI markers varied according to disease severity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
团团完成签到 ,获得积分10
1秒前
科目三应助杰森斯坦虎采纳,获得10
2秒前
zzz发布了新的文献求助10
2秒前
zhangyt发布了新的文献求助10
3秒前
zhl发布了新的文献求助10
3秒前
4秒前
一一应助zgf采纳,获得30
5秒前
9秒前
Owen应助1018wxy采纳,获得20
10秒前
蓁66完成签到,获得积分10
10秒前
闲人颦儿完成签到,获得积分10
11秒前
Owen应助111采纳,获得10
12秒前
Owen应助闲人颦儿采纳,获得10
14秒前
15秒前
15秒前
科研通AI2S应助foeena采纳,获得10
17秒前
Lucas应助zzz采纳,获得10
18秒前
田様应助baby采纳,获得10
20秒前
gaoxueli完成签到 ,获得积分10
20秒前
zzk发布了新的文献求助30
21秒前
21秒前
22秒前
Reese完成签到 ,获得积分10
23秒前
我是老大应助dai采纳,获得10
23秒前
24秒前
顾矜应助科研小辣鸡采纳,获得10
24秒前
ding应助miao采纳,获得10
24秒前
木木杨完成签到,获得积分10
24秒前
24秒前
24秒前
耿舒婷完成签到,获得积分10
25秒前
标致惋庭发布了新的文献求助10
27秒前
英姑应助sam采纳,获得10
28秒前
29秒前
30秒前
30秒前
苹果紫完成签到 ,获得积分10
31秒前
32秒前
彭于晏应助一刀999级采纳,获得10
32秒前
32秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3210181
求助须知:如何正确求助?哪些是违规求助? 2859571
关于积分的说明 8119919
捐赠科研通 2525099
什么是DOI,文献DOI怎么找? 1358829
科研通“疑难数据库(出版商)”最低求助积分说明 642875
邀请新用户注册赠送积分活动 614694