Channel pruned YOLO V5s-based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning

稀释 果园 计算机科学 频道(广播) 修剪 人工智能 果树 园艺 数学 深度学习 苹果属植物 产量(工程) 模式识别(心理学)
作者
Dandan Wang,Dongjian He
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:210: 271-281 被引量:293
标识
DOI:10.1016/j.biosystemseng.2021.08.015
摘要

The rapid and accurate detection of apple fruitlets before fruit thinning is important for the realization of early yield estimation and automatic fruit thinning. However, factors such as a complex growth environment, uncertain illumination, and the clustering and occlusion of apple fruitlets, especially the extreme similarities between fruitlets and backgrounds, make it difficult to effectively detect apple fruitlets before thinning. The overall goal of this study was to develop an accurate apple fruitlet detection method with small model size based on a channel pruned YOLO V5s deep learning algorithm. First, using transfer learning, a YOLO V5s detection model was built to detect apple fruitlets. To simplify the detection model and ensure the detection efficiency, a channel pruning algorithm was used to prune the YOLO V5s model. The pruned model was then fine-tuned to achieve rapid and accurate detection of apple fruitlets. The experimental results showed that the channel pruned YOLO V5s model provided an effective method to detect apple fruitlets under different conditions. A recall, precision, F1 score, and false detection rate of 87.6%, 95.8%, 91.5% and 4.2%, respectively, were achieved; the average detection time was 8 ms per image; and the model size was only 1.4 MB. The performance of our method outperformed seven methods in comparison, indicating that our method simplified the model effectively on the premise of ensuring the detection accuracy. Our method provides a reference for the development of portable mobile fruit thinning terminals, and it can be used to help growers optimise their orchard management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助apong采纳,获得10
刚刚
刚刚
orixero应助Leslie采纳,获得10
刚刚
1秒前
1秒前
GQL发布了新的文献求助10
1秒前
lanminghao完成签到 ,获得积分10
1秒前
酷波er应助小花猫采纳,获得10
1秒前
瓶子发布了新的文献求助10
3秒前
3秒前
ding应助mark707采纳,获得10
3秒前
在水一方应助galaxy采纳,获得30
4秒前
等等完成签到,获得积分20
4秒前
简简发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
向北发布了新的文献求助10
6秒前
7秒前
飞飞猪发布了新的文献求助10
8秒前
8秒前
大模型应助康智采纳,获得10
9秒前
9秒前
上官若男应助菜菜菜菜伞采纳,获得10
9秒前
或无情发布了新的文献求助10
9秒前
zwangxia发布了新的文献求助10
9秒前
10秒前
10秒前
xuanxuan完成签到 ,获得积分10
11秒前
GQL完成签到,获得积分10
11秒前
11秒前
包容代芹发布了新的文献求助10
12秒前
12秒前
科研通AI6.1应助向北采纳,获得10
12秒前
dominic12361发布了新的文献求助10
13秒前
碧霄完成签到,获得积分10
13秒前
13秒前
13秒前
微笑以南发布了新的文献求助10
14秒前
riceyellow完成签到,获得积分10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743234
求助须知:如何正确求助?哪些是违规求助? 5413106
关于积分的说明 15347071
捐赠科研通 4884098
什么是DOI,文献DOI怎么找? 2625582
邀请新用户注册赠送积分活动 1574482
关于科研通互助平台的介绍 1531345