Channel pruned YOLO V5s-based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning

稀释 果园 计算机科学 频道(广播) 修剪 人工智能 园艺 生物 林业 地理 计算机网络
作者
Dandan Wang,Dongjian He
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:210: 271-281 被引量:168
标识
DOI:10.1016/j.biosystemseng.2021.08.015
摘要

The rapid and accurate detection of apple fruitlets before fruit thinning is important for the realization of early yield estimation and automatic fruit thinning. However, factors such as a complex growth environment, uncertain illumination, and the clustering and occlusion of apple fruitlets, especially the extreme similarities between fruitlets and backgrounds, make it difficult to effectively detect apple fruitlets before thinning. The overall goal of this study was to develop an accurate apple fruitlet detection method with small model size based on a channel pruned YOLO V5s deep learning algorithm. First, using transfer learning, a YOLO V5s detection model was built to detect apple fruitlets. To simplify the detection model and ensure the detection efficiency, a channel pruning algorithm was used to prune the YOLO V5s model. The pruned model was then fine-tuned to achieve rapid and accurate detection of apple fruitlets. The experimental results showed that the channel pruned YOLO V5s model provided an effective method to detect apple fruitlets under different conditions. A recall, precision, F1 score, and false detection rate of 87.6%, 95.8%, 91.5% and 4.2%, respectively, were achieved; the average detection time was 8 ms per image; and the model size was only 1.4 MB. The performance of our method outperformed seven methods in comparison, indicating that our method simplified the model effectively on the premise of ensuring the detection accuracy. Our method provides a reference for the development of portable mobile fruit thinning terminals, and it can be used to help growers optimise their orchard management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dxr发布了新的文献求助10
1秒前
光光完成签到,获得积分10
2秒前
8秒前
虞芯发布了新的文献求助20
8秒前
9秒前
11秒前
顾矜应助凛冬采纳,获得10
11秒前
骤雨时晴完成签到,获得积分10
12秒前
weiwei发布了新的文献求助10
13秒前
14秒前
细心可乐完成签到 ,获得积分10
14秒前
舒畅完成签到,获得积分10
14秒前
苞米公主完成签到,获得积分10
15秒前
16秒前
Qing发布了新的文献求助10
18秒前
lshu文应助骨小梁采纳,获得10
18秒前
19秒前
20秒前
阿元发布了新的文献求助10
20秒前
专一的白萱完成签到 ,获得积分10
21秒前
打打应助优雅的乐蓉采纳,获得10
22秒前
源一完成签到,获得积分20
22秒前
六十元发布了新的文献求助20
23秒前
虞芯完成签到,获得积分10
24秒前
鲤鱼坤完成签到 ,获得积分10
26秒前
26秒前
源一发布了新的文献求助30
27秒前
shuangfeng1853完成签到 ,获得积分10
29秒前
cooper完成签到 ,获得积分10
29秒前
兔图图完成签到 ,获得积分10
30秒前
SciGPT应助Phi.Wang采纳,获得10
31秒前
爱静静应助王小白采纳,获得10
31秒前
爱笑的万天完成签到,获得积分10
32秒前
小汤圆完成签到 ,获得积分10
33秒前
小辣椒完成签到 ,获得积分10
36秒前
shihuima完成签到,获得积分10
37秒前
38秒前
传奇3应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
sammi米应助科研通管家采纳,获得10
38秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139963
求助须知:如何正确求助?哪些是违规求助? 2790837
关于积分的说明 7796725
捐赠科研通 2447191
什么是DOI,文献DOI怎么找? 1301727
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601194