已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Channel pruned YOLO V5s-based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning

稀释 果园 计算机科学 频道(广播) 修剪 人工智能 果树 园艺 数学 深度学习 苹果属植物 产量(工程) 模式识别(心理学)
作者
Dandan Wang,Dongjian He
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:210: 271-281 被引量:293
标识
DOI:10.1016/j.biosystemseng.2021.08.015
摘要

The rapid and accurate detection of apple fruitlets before fruit thinning is important for the realization of early yield estimation and automatic fruit thinning. However, factors such as a complex growth environment, uncertain illumination, and the clustering and occlusion of apple fruitlets, especially the extreme similarities between fruitlets and backgrounds, make it difficult to effectively detect apple fruitlets before thinning. The overall goal of this study was to develop an accurate apple fruitlet detection method with small model size based on a channel pruned YOLO V5s deep learning algorithm. First, using transfer learning, a YOLO V5s detection model was built to detect apple fruitlets. To simplify the detection model and ensure the detection efficiency, a channel pruning algorithm was used to prune the YOLO V5s model. The pruned model was then fine-tuned to achieve rapid and accurate detection of apple fruitlets. The experimental results showed that the channel pruned YOLO V5s model provided an effective method to detect apple fruitlets under different conditions. A recall, precision, F1 score, and false detection rate of 87.6%, 95.8%, 91.5% and 4.2%, respectively, were achieved; the average detection time was 8 ms per image; and the model size was only 1.4 MB. The performance of our method outperformed seven methods in comparison, indicating that our method simplified the model effectively on the premise of ensuring the detection accuracy. Our method provides a reference for the development of portable mobile fruit thinning terminals, and it can be used to help growers optimise their orchard management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
原子完成签到,获得积分10
4秒前
dmq关注了科研通微信公众号
5秒前
Sinner完成签到,获得积分10
6秒前
赘婿应助西米采纳,获得10
10秒前
健壮的迎梦完成签到 ,获得积分20
11秒前
yiyiyi完成签到 ,获得积分10
12秒前
sky发布了新的文献求助10
14秒前
科研通AI6应助顺利的雪莲采纳,获得10
15秒前
英姑应助顺利的雪莲采纳,获得10
15秒前
16秒前
16秒前
雨青完成签到 ,获得积分10
20秒前
jellybones发布了新的文献求助10
21秒前
西米发布了新的文献求助10
21秒前
不摇碧莲完成签到 ,获得积分10
27秒前
30秒前
小研不咸发布了新的文献求助10
31秒前
小蘑菇应助哈哈采纳,获得10
31秒前
科研通AI6应助XT采纳,获得10
31秒前
jie完成签到 ,获得积分10
37秒前
bobo1129完成签到,获得积分10
39秒前
SCI完成签到 ,获得积分10
41秒前
Adel完成签到 ,获得积分10
41秒前
华仔应助科研通管家采纳,获得10
43秒前
SciGPT应助科研通管家采纳,获得10
43秒前
田様应助科研通管家采纳,获得10
43秒前
科研通AI6应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
eric888应助科研通管家采纳,获得100
43秒前
Akim应助科研通管家采纳,获得10
44秒前
完美世界应助科研通管家采纳,获得10
44秒前
我是老大应助科研通管家采纳,获得10
44秒前
华仔应助科研通管家采纳,获得10
44秒前
脑洞疼应助科研通管家采纳,获得10
44秒前
华仔应助科研通管家采纳,获得10
44秒前
烟花应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
44秒前
lxt发布了新的文献求助10
47秒前
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431845
求助须知:如何正确求助?哪些是违规求助? 4544693
关于积分的说明 14193685
捐赠科研通 4463904
什么是DOI,文献DOI怎么找? 2446904
邀请新用户注册赠送积分活动 1438241
关于科研通互助平台的介绍 1414979