亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Channel pruned YOLO V5s-based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning

稀释 果园 计算机科学 频道(广播) 修剪 人工智能 果树 园艺 数学 深度学习 苹果属植物 产量(工程) 模式识别(心理学)
作者
Dandan Wang,Dongjian He
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:210: 271-281 被引量:293
标识
DOI:10.1016/j.biosystemseng.2021.08.015
摘要

The rapid and accurate detection of apple fruitlets before fruit thinning is important for the realization of early yield estimation and automatic fruit thinning. However, factors such as a complex growth environment, uncertain illumination, and the clustering and occlusion of apple fruitlets, especially the extreme similarities between fruitlets and backgrounds, make it difficult to effectively detect apple fruitlets before thinning. The overall goal of this study was to develop an accurate apple fruitlet detection method with small model size based on a channel pruned YOLO V5s deep learning algorithm. First, using transfer learning, a YOLO V5s detection model was built to detect apple fruitlets. To simplify the detection model and ensure the detection efficiency, a channel pruning algorithm was used to prune the YOLO V5s model. The pruned model was then fine-tuned to achieve rapid and accurate detection of apple fruitlets. The experimental results showed that the channel pruned YOLO V5s model provided an effective method to detect apple fruitlets under different conditions. A recall, precision, F1 score, and false detection rate of 87.6%, 95.8%, 91.5% and 4.2%, respectively, were achieved; the average detection time was 8 ms per image; and the model size was only 1.4 MB. The performance of our method outperformed seven methods in comparison, indicating that our method simplified the model effectively on the premise of ensuring the detection accuracy. Our method provides a reference for the development of portable mobile fruit thinning terminals, and it can be used to help growers optimise their orchard management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dawnfrf发布了新的文献求助45
1秒前
3秒前
光轮2000发布了新的文献求助10
4秒前
寻舟者发布了新的文献求助10
7秒前
9秒前
z_rainbow发布了新的文献求助10
11秒前
寻舟者完成签到,获得积分10
14秒前
dawnfrf完成签到,获得积分10
24秒前
ciallo发布了新的文献求助10
25秒前
传统的怀薇完成签到 ,获得积分10
32秒前
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
今后应助科研通管家采纳,获得10
44秒前
nini完成签到,获得积分10
55秒前
皮皮完成签到 ,获得积分10
58秒前
情怀应助光轮2000采纳,获得10
1分钟前
ljx完成签到 ,获得积分10
1分钟前
weihua完成签到 ,获得积分10
1分钟前
1分钟前
大个应助ciallo采纳,获得10
1分钟前
1分钟前
xtt发布了新的文献求助10
1分钟前
光轮2000发布了新的文献求助10
1分钟前
Lucas应助橘子有点酸采纳,获得10
1分钟前
1分钟前
MR_芝欧发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI2S应助光轮2000采纳,获得10
2分钟前
2分钟前
2分钟前
光轮2000发布了新的文献求助10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
wangfaqing942完成签到 ,获得积分10
2分钟前
xixiazhiwang完成签到 ,获得积分10
2分钟前
xaopng完成签到,获得积分10
3分钟前
3分钟前
Lucas应助lzy采纳,获得10
3分钟前
ceeray23发布了新的文献求助20
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603285
求助须知:如何正确求助?哪些是违规求助? 4688360
关于积分的说明 14853336
捐赠科研通 4688979
什么是DOI,文献DOI怎么找? 2540586
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471594