亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Channel pruned YOLO V5s-based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning

稀释 果园 计算机科学 频道(广播) 修剪 人工智能 果树 园艺 数学 深度学习 苹果属植物 产量(工程) 模式识别(心理学)
作者
Dandan Wang,Dongjian He
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:210: 271-281 被引量:293
标识
DOI:10.1016/j.biosystemseng.2021.08.015
摘要

The rapid and accurate detection of apple fruitlets before fruit thinning is important for the realization of early yield estimation and automatic fruit thinning. However, factors such as a complex growth environment, uncertain illumination, and the clustering and occlusion of apple fruitlets, especially the extreme similarities between fruitlets and backgrounds, make it difficult to effectively detect apple fruitlets before thinning. The overall goal of this study was to develop an accurate apple fruitlet detection method with small model size based on a channel pruned YOLO V5s deep learning algorithm. First, using transfer learning, a YOLO V5s detection model was built to detect apple fruitlets. To simplify the detection model and ensure the detection efficiency, a channel pruning algorithm was used to prune the YOLO V5s model. The pruned model was then fine-tuned to achieve rapid and accurate detection of apple fruitlets. The experimental results showed that the channel pruned YOLO V5s model provided an effective method to detect apple fruitlets under different conditions. A recall, precision, F1 score, and false detection rate of 87.6%, 95.8%, 91.5% and 4.2%, respectively, were achieved; the average detection time was 8 ms per image; and the model size was only 1.4 MB. The performance of our method outperformed seven methods in comparison, indicating that our method simplified the model effectively on the premise of ensuring the detection accuracy. Our method provides a reference for the development of portable mobile fruit thinning terminals, and it can be used to help growers optimise their orchard management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傲娇泥猴桃完成签到 ,获得积分10
1秒前
2秒前
3秒前
4秒前
mu发布了新的文献求助30
6秒前
zdb发布了新的文献求助30
6秒前
anzai发布了新的文献求助10
6秒前
meng发布了新的文献求助10
7秒前
马马完成签到 ,获得积分10
8秒前
anzai完成签到,获得积分10
14秒前
绿狗玩偶完成签到,获得积分20
16秒前
123完成签到,获得积分10
18秒前
19秒前
土豪的洋葱完成签到,获得积分10
25秒前
共享精神应助明理夏波采纳,获得10
28秒前
xzq发布了新的文献求助10
29秒前
科研通AI5应助小区保安采纳,获得10
30秒前
32秒前
科目三应助君君采纳,获得10
33秒前
34秒前
赘婿应助裂头蚴采纳,获得30
36秒前
xzq完成签到,获得积分10
40秒前
41秒前
Yyyang发布了新的文献求助10
46秒前
在水一方应助兴奋的冰棍采纳,获得30
48秒前
49秒前
秋半梦完成签到,获得积分10
49秒前
50秒前
19950728完成签到 ,获得积分10
50秒前
52秒前
53秒前
裂头蚴完成签到,获得积分20
54秒前
Cx完成签到,获得积分10
54秒前
李玄发布了新的文献求助10
58秒前
君君发布了新的文献求助10
58秒前
1分钟前
1分钟前
闵凝竹完成签到 ,获得积分0
1分钟前
春天的粥完成签到 ,获得积分10
1分钟前
AprilLeung完成签到 ,获得积分10
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5136969
求助须知:如何正确求助?哪些是违规求助? 4336942
关于积分的说明 13510878
捐赠科研通 4175350
什么是DOI,文献DOI怎么找? 2289362
邀请新用户注册赠送积分活动 1289926
关于科研通互助平台的介绍 1231342