Channel pruned YOLO V5s-based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning

稀释 果园 计算机科学 频道(广播) 修剪 人工智能 园艺 生物 林业 地理 计算机网络
作者
Dandan Wang,Dongjian He
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:210: 271-281 被引量:261
标识
DOI:10.1016/j.biosystemseng.2021.08.015
摘要

The rapid and accurate detection of apple fruitlets before fruit thinning is important for the realization of early yield estimation and automatic fruit thinning. However, factors such as a complex growth environment, uncertain illumination, and the clustering and occlusion of apple fruitlets, especially the extreme similarities between fruitlets and backgrounds, make it difficult to effectively detect apple fruitlets before thinning. The overall goal of this study was to develop an accurate apple fruitlet detection method with small model size based on a channel pruned YOLO V5s deep learning algorithm. First, using transfer learning, a YOLO V5s detection model was built to detect apple fruitlets. To simplify the detection model and ensure the detection efficiency, a channel pruning algorithm was used to prune the YOLO V5s model. The pruned model was then fine-tuned to achieve rapid and accurate detection of apple fruitlets. The experimental results showed that the channel pruned YOLO V5s model provided an effective method to detect apple fruitlets under different conditions. A recall, precision, F1 score, and false detection rate of 87.6%, 95.8%, 91.5% and 4.2%, respectively, were achieved; the average detection time was 8 ms per image; and the model size was only 1.4 MB. The performance of our method outperformed seven methods in comparison, indicating that our method simplified the model effectively on the premise of ensuring the detection accuracy. Our method provides a reference for the development of portable mobile fruit thinning terminals, and it can be used to help growers optimise their orchard management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜美皮卡丘完成签到,获得积分20
1秒前
一个发布了新的文献求助10
1秒前
zm完成签到,获得积分10
1秒前
顽张完成签到 ,获得积分10
2秒前
3秒前
小马甲应助德国克大夫采纳,获得10
3秒前
开心雪卉完成签到,获得积分10
3秒前
霍比特人发布了新的文献求助10
3秒前
ooo娜完成签到,获得积分10
4秒前
5秒前
茜茜哥哥发布了新的文献求助10
7秒前
黄建林发布了新的文献求助10
7秒前
Aran_Zhang应助XL神放采纳,获得30
7秒前
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
9秒前
科研助手6应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
ED应助科研通管家采纳,获得20
9秒前
iNk应助科研通管家采纳,获得20
9秒前
ED应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
积极幻桃应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
yar应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
研友_nq2EjZ完成签到,获得积分10
10秒前
10秒前
han应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998449
求助须知:如何正确求助?哪些是违规求助? 3537924
关于积分的说明 11272900
捐赠科研通 3276966
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883819
科研通“疑难数据库(出版商)”最低求助积分说明 810020