亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep residual LSTM with domain-invariance for remaining useful life prediction across domains

计算机科学 人工智能 残余物 判别式 分类器(UML) 领域(数学分析) 模式识别(心理学) 机器学习 域适应 深度学习 公制(单位) 边距(机器学习) 数据挖掘 算法 数学 工程类 数学分析 运营管理
作者
Song Fu,Yongjian Zhang,Lin Lin,Minghang Zhao,Shisheng Zhong
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:216: 108012-108012 被引量:72
标识
DOI:10.1016/j.ress.2021.108012
摘要

Currently developed unsupervised domain adaptation (UDA) methods have somewhat improved the prognostic performance of cross-domain RUL prediction, but only optimizing one single metric (MMD or adversarial mechanism) to reduce the domain discrepancy has limited further improvement. Moreover, learning a set of good features has been a long-standing issue in RUL prediction. To address these issues, an effective UDA method namely deep residual LSTM with Domain-invariance (DIDRLSTM) is investigated to improve the prognostic performance. First, the DRLSTM is designed as the feature extractor to learn high-level features from both source and target domains. The introduction of residual connections allows DRLSTM to add more nonlinear layers to learn the more representative degradation features. Second, two modules are integrated to further reduce the domain discrepancy. One is domain adaptation, which reduces the domain discrepancy by adding MK-MMD constraints to map the features to RHKS. The other is domain confusion, which reduces the domain discrepancy through minimizing the domain discriminative ability of the domain classifier trained under adversarial optimization strategy. Finally, the outstanding performance of DIDRLSTM is validated on C-MAPSS dataset and FEMTO-ST dataset. The experimental results show that the DIDRLSTM outperforms five state-of-the-art UDA methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助芝麻采纳,获得10
10秒前
14秒前
jjjjj发布了新的文献求助10
15秒前
Liufgui应助花凉采纳,获得20
15秒前
biubiubiu发布了新的文献求助10
17秒前
万能图书馆应助章鱼采纳,获得10
20秒前
jjjjj完成签到,获得积分20
25秒前
27秒前
章鱼发布了新的文献求助10
31秒前
牛八先生完成签到,获得积分10
32秒前
33秒前
孙燕应助jjjjj采纳,获得30
33秒前
Liufgui应助花凉采纳,获得20
48秒前
Ava关闭了Ava文献求助
48秒前
科研通AI2S应助liudy采纳,获得10
1分钟前
科研通AI2S应助sljzhangbiao11采纳,获得10
1分钟前
1分钟前
徐悦月发布了新的文献求助10
1分钟前
三笠发布了新的文献求助10
1分钟前
小刘完成签到,获得积分10
1分钟前
1分钟前
三笠完成签到,获得积分10
1分钟前
传奇3应助Liiiiiiiiii采纳,获得10
1分钟前
gt完成签到 ,获得积分10
1分钟前
1分钟前
文静栾完成签到 ,获得积分10
1分钟前
芝麻关注了科研通微信公众号
2分钟前
2分钟前
所所应助徐悦月采纳,获得10
2分钟前
2分钟前
核桃发布了新的文献求助10
2分钟前
2分钟前
芝麻发布了新的文献求助10
2分钟前
昏睡的沛柔完成签到 ,获得积分10
2分钟前
Aliya完成签到 ,获得积分10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
李李发布了新的文献求助10
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990045
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256334
捐赠科研通 3270943
什么是DOI,文献DOI怎么找? 1805146
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228