Urban tree species classification using UAV-based multi-sensor data fusion and machine learning

多光谱图像 高光谱成像 激光雷达 遥感 支持向量机 传感器融合 人工智能 计算机科学 随机森林 光谱特征 树(集合论) 科恩卡帕 模式识别(心理学) 机器学习 地理 数学 数学分析
作者
Sean Hartling,Vasit Sagan,Maitiniyazi Maimaitijiang
出处
期刊:Giscience & Remote Sensing [Informa]
卷期号:58 (8): 1250-1275 被引量:71
标识
DOI:10.1080/15481603.2021.1974275
摘要

Urban tree species classification is a challenging task due to spectral and spatial diversity within an urban environment. Unmanned aerial vehicle (UAV) platforms and small-sensor technology are rapidly evolving, presenting the opportunity for a comprehensive multi-sensor remote sensing approach for urban tree classification. The objectives of this paper were to develop a multi-sensor data fusion technique for urban tree species classification with limited training samples. To that end, UAV-based multispectral, hyperspectral, LiDAR, and thermal infrared imagery was collected over an urban study area to test the classification of 96 individual trees from seven species using a data fusion approach. Two supervised machine learning classifiers, Random Forest (RF) and Support Vector Machine (SVM), were investigated for their capacity to incorporate highly dimensional and diverse datasets from multiple sensors. When using hyperspectral-derived spectral features with RF, the fusion of all features extracted from all sensor types (spectral, LiDAR, thermal) achieved the highest overall classification accuracy (OA) of 83.3% and kappa of 0.80. Despite multispectral reflectance bands alone producing significantly lower OA of 55.2% compared to 70.2% with minimum noise fraction (MNF) transformed hyperspectral reflectance bands, the full dataset combination (spectral, LiDAR, thermal) with multispectral-derived spectral features achieved an OA of 81.3% and kappa of 0.77 using RF. Comparison of the features extracted from individual sensors for each species highlight the ability for each sensor to identify distinguishable characteristics between species to aid classification. The results demonstrate the potential for a high-resolution multi-sensor data fusion approach for classifying individual trees by species in a complex urban environment under limited sampling requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
斯文的如雪完成签到,获得积分10
1秒前
成就绮琴完成签到 ,获得积分10
2秒前
田様应助zzzzzzz采纳,获得10
4秒前
红莲墨生发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
这么年轻压根睡不着完成签到 ,获得积分10
9秒前
11秒前
辰辰发布了新的文献求助50
11秒前
丘比特应助space采纳,获得10
11秒前
卓儿发布了新的文献求助10
11秒前
11秒前
zz完成签到 ,获得积分10
12秒前
13秒前
14秒前
欣喜亚男完成签到,获得积分10
14秒前
pipi完成签到,获得积分10
14秒前
JJ完成签到 ,获得积分10
15秒前
15秒前
15秒前
16秒前
sun发布了新的文献求助10
17秒前
18秒前
SciGPT应助活力芷天采纳,获得10
18秒前
callmefather完成签到 ,获得积分10
18秒前
Lucas应助风中的觅儿采纳,获得10
19秒前
李健的小迷弟应助卿筠采纳,获得10
19秒前
20秒前
红莲墨生发布了新的文献求助10
20秒前
迷路尔曼发布了新的文献求助10
21秒前
梁可可发布了新的文献求助10
21秒前
21秒前
lxy发布了新的文献求助10
22秒前
lindoudou发布了新的文献求助10
25秒前
田様应助卓儿采纳,获得10
25秒前
ys发布了新的文献求助10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525973
求助须知:如何正确求助?哪些是违规求助? 3106420
关于积分的说明 9280254
捐赠科研通 2804049
什么是DOI,文献DOI怎么找? 1539151
邀请新用户注册赠送积分活动 716511
科研通“疑难数据库(出版商)”最低求助积分说明 709462