Urban tree species classification using UAV-based multi-sensor data fusion and machine learning

多光谱图像 高光谱成像 激光雷达 遥感 支持向量机 传感器融合 人工智能 计算机科学 随机森林 光谱特征 树(集合论) 科恩卡帕 模式识别(心理学) 机器学习 地理 数学 数学分析
作者
Sean Hartling,Vasit Sagan,Maitiniyazi Maimaitijiang
出处
期刊:Giscience & Remote Sensing [Taylor & Francis]
卷期号:58 (8): 1250-1275 被引量:71
标识
DOI:10.1080/15481603.2021.1974275
摘要

Urban tree species classification is a challenging task due to spectral and spatial diversity within an urban environment. Unmanned aerial vehicle (UAV) platforms and small-sensor technology are rapidly evolving, presenting the opportunity for a comprehensive multi-sensor remote sensing approach for urban tree classification. The objectives of this paper were to develop a multi-sensor data fusion technique for urban tree species classification with limited training samples. To that end, UAV-based multispectral, hyperspectral, LiDAR, and thermal infrared imagery was collected over an urban study area to test the classification of 96 individual trees from seven species using a data fusion approach. Two supervised machine learning classifiers, Random Forest (RF) and Support Vector Machine (SVM), were investigated for their capacity to incorporate highly dimensional and diverse datasets from multiple sensors. When using hyperspectral-derived spectral features with RF, the fusion of all features extracted from all sensor types (spectral, LiDAR, thermal) achieved the highest overall classification accuracy (OA) of 83.3% and kappa of 0.80. Despite multispectral reflectance bands alone producing significantly lower OA of 55.2% compared to 70.2% with minimum noise fraction (MNF) transformed hyperspectral reflectance bands, the full dataset combination (spectral, LiDAR, thermal) with multispectral-derived spectral features achieved an OA of 81.3% and kappa of 0.77 using RF. Comparison of the features extracted from individual sensors for each species highlight the ability for each sensor to identify distinguishable characteristics between species to aid classification. The results demonstrate the potential for a high-resolution multi-sensor data fusion approach for classifying individual trees by species in a complex urban environment under limited sampling requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耶耶耶完成签到,获得积分10
1秒前
山丘发布了新的文献求助10
1秒前
1秒前
1秒前
欢喜嘉懿完成签到,获得积分20
3秒前
中和皇极完成签到,获得积分0
3秒前
ddd发布了新的文献求助10
4秒前
爆米花应助肖雪依采纳,获得10
4秒前
余南发布了新的文献求助10
5秒前
木木发布了新的文献求助50
6秒前
Ava应助达克赛德采纳,获得10
8秒前
兴奋的小虾米完成签到,获得积分10
8秒前
8秒前
爆米花应助Alioth采纳,获得10
9秒前
兮兮完成签到,获得积分10
9秒前
ljx完成签到 ,获得积分10
11秒前
11秒前
12秒前
科研通AI2S应助sakura采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
不吃香菜发布了新的文献求助100
13秒前
小药童完成签到 ,获得积分10
14秒前
山丘完成签到,获得积分10
14秒前
15秒前
15秒前
skywalker发布了新的文献求助10
16秒前
骑个柯基完成签到,获得积分10
17秒前
yyfdqms完成签到,获得积分10
18秒前
meat12应助hhh采纳,获得10
19秒前
19秒前
20秒前
21秒前
fujiaxing完成签到,获得积分10
23秒前
田一完成签到,获得积分10
23秒前
23秒前
25秒前
时召展发布了新的文献求助10
26秒前
不吃香菜完成签到,获得积分10
26秒前
桐桐应助mary采纳,获得10
28秒前
上官若男应助gggggd采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956172
求助须知:如何正确求助?哪些是违规求助? 3502400
关于积分的说明 11107420
捐赠科研通 3232954
什么是DOI,文献DOI怎么找? 1787093
邀请新用户注册赠送积分活动 870482
科研通“疑难数据库(出版商)”最低求助积分说明 802019