Deep learning method for aortic root detection

人工智能 分割 计算机科学 深度学习 水准点(测量) 模式识别(心理学) 试验装置 主动脉根 计算机断层摄影术 集合(抽象数据类型) 数据集 放射科 医学 主动脉 地图学 心脏病学 程序设计语言 地理
作者
Pablo G. Tahoces,Rafael Varela Ponte,José M. Carreira
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:135: 104533-104533 被引量:9
标识
DOI:10.1016/j.compbiomed.2021.104533
摘要

Computed tomography angiography (CTA) is a preferred imaging technique for a wide range of vascular diseases. However, extensive manual analysis is required to detect and identify several anatomical landmarks for clinical application. This study demonstrates the feasibility of a fully automatic method for detecting the aortic root, which is a key anatomical landmark in this type of procedure. The approach is based on the use of deep learning techniques that attempt to mimic expert behavior. A total of 69 CTA scans (39 for training and 30 for validation) with different pathology types were selected to train the network. Furthermore, a total of 71 CTA scans were selected independently and applied as the test set to assess their performance. The accuracy was evaluated by comparing the locations marked by the method with benchmark locations (which were manually marked by two experts). The interobserver error was 4.6 ± 2.3 mm. On an average, the differences between the locations marked by the two experts and those detected by the computer were 6.6 ± 3.0 mm and 6.8 ± 3.3 mm, respectively, when calculated using the test set. From an analysis of these results, we can conclude that the proposed method based on pre-trained CNN models can accurately detect the aortic root in CTA images without prior segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ferrycake应助悦耳秋天采纳,获得20
刚刚
刚刚
LJ完成签到,获得积分10
1秒前
叶子发布了新的文献求助10
1秒前
Ring发布了新的文献求助10
1秒前
一拳超人发布了新的文献求助30
1秒前
感动迎蕾发布了新的文献求助10
1秒前
1秒前
zsssssh完成签到,获得积分10
1秒前
失眠觅云发布了新的文献求助10
2秒前
明亮白筠发布了新的文献求助10
3秒前
3秒前
handsomelin发布了新的文献求助10
3秒前
hahaha123发布了新的文献求助30
4秒前
子非愚完成签到,获得积分10
4秒前
FLMXene发布了新的文献求助10
5秒前
5秒前
diraczh完成签到,获得积分20
6秒前
消失的狐狸君完成签到,获得积分10
7秒前
mjicm完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
华仔应助LP采纳,获得10
10秒前
10秒前
12秒前
Dr.zhong发布了新的文献求助10
12秒前
cocolu应助dmyy313235采纳,获得10
13秒前
Ring完成签到,获得积分20
13秒前
123发布了新的文献求助10
14秒前
斯文败类应助Aurora采纳,获得10
15秒前
失眠觅云发布了新的文献求助100
15秒前
16秒前
17秒前
花朵发布了新的文献求助10
17秒前
上官若男应助若有光采纳,获得10
18秒前
爱静静应助消失的狐狸君采纳,获得10
19秒前
20秒前
Jim发布了新的文献求助10
20秒前
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307009
求助须知:如何正确求助?哪些是违规求助? 2940878
关于积分的说明 8498950
捐赠科研通 2614965
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663478
邀请新用户注册赠送积分活动 648318