Deep learning method for aortic root detection

人工智能 分割 计算机科学 深度学习 水准点(测量) 模式识别(心理学) 试验装置 主动脉根 计算机断层摄影术 集合(抽象数据类型) 数据集 放射科 医学 主动脉 地图学 心脏病学 程序设计语言 地理
作者
Pablo G. Tahoces,Rafael Varela Ponte,José M. Carreira
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:135: 104533-104533 被引量:10
标识
DOI:10.1016/j.compbiomed.2021.104533
摘要

Computed tomography angiography (CTA) is a preferred imaging technique for a wide range of vascular diseases. However, extensive manual analysis is required to detect and identify several anatomical landmarks for clinical application. This study demonstrates the feasibility of a fully automatic method for detecting the aortic root, which is a key anatomical landmark in this type of procedure. The approach is based on the use of deep learning techniques that attempt to mimic expert behavior. A total of 69 CTA scans (39 for training and 30 for validation) with different pathology types were selected to train the network. Furthermore, a total of 71 CTA scans were selected independently and applied as the test set to assess their performance. The accuracy was evaluated by comparing the locations marked by the method with benchmark locations (which were manually marked by two experts). The interobserver error was 4.6 ± 2.3 mm. On an average, the differences between the locations marked by the two experts and those detected by the computer were 6.6 ± 3.0 mm and 6.8 ± 3.3 mm, respectively, when calculated using the test set. From an analysis of these results, we can conclude that the proposed method based on pre-trained CNN models can accurately detect the aortic root in CTA images without prior segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助xu采纳,获得10
刚刚
FinMars.完成签到,获得积分10
刚刚
豆丁完成签到,获得积分10
刚刚
科研通AI2S应助Crystal采纳,获得10
1秒前
猫猫小队长完成签到,获得积分10
1秒前
1秒前
1秒前
czcz完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
Rrr完成签到,获得积分10
4秒前
Cxxxxxxv完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
深情安青应助钙帮弟子采纳,获得10
6秒前
研友_VZG7GZ应助我爱看文献采纳,获得10
6秒前
等待戈多发布了新的文献求助10
7秒前
wyz发布了新的文献求助10
8秒前
9秒前
10秒前
ete完成签到,获得积分10
10秒前
gybreeze完成签到,获得积分10
11秒前
PO8发布了新的文献求助10
11秒前
11秒前
JamesPei应助牛姐采纳,获得30
12秒前
14秒前
lzy发布了新的文献求助10
14秒前
xiaoq发布了新的文献求助10
15秒前
和包蛋发布了新的文献求助10
15秒前
浮游应助弹指一挥间采纳,获得10
15秒前
CodeCraft应助张安然采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
qc应助火龙果采纳,获得50
16秒前
天天快乐应助淡然的冰海采纳,获得10
17秒前
17秒前
啊啊完成签到,获得积分10
17秒前
所所应助mnjknm采纳,获得10
17秒前
17秒前
FrancisAndre完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069075
求助须知:如何正确求助?哪些是违规求助? 4290578
关于积分的说明 13368063
捐赠科研通 4110562
什么是DOI,文献DOI怎么找? 2251023
邀请新用户注册赠送积分活动 1256227
关于科研通互助平台的介绍 1188698