高斯过程
高斯分布
高斯函数
领域(数学)
高斯噪声
核(代数)
高斯随机场
噪音(视频)
采样(信号处理)
计算机科学
算法
数学
人工智能
物理
计算机视觉
量子力学
滤波器(信号处理)
组合数学
图像(数学)
纯数学
作者
Zoi-Heleni Michalopoulou,Peter Gerstoft,Diego Caviedes-Nozal
出处
期刊:JASA express letters
[Acoustical Society of America]
日期:2021-06-01
卷期号:1 (6)
被引量:26
摘要
For a sparsely observed acoustic field, Gaussian processes can predict a densely sampled field on the array. The prediction quality depends on the choice of a kernel and a set of hyperparameters. Gaussian processes are applied to source localization in the ocean in combination with matched-field processing. Compared to conventional processing, the denser sampling of the predicted field across the array reduces the ambiguity function sidelobes. As the noise level increases, the Gaussian process-based processor has a distinctly higher probability of correct localization than conventional processing, due to both denoising and denser field prediction.
科研通智能强力驱动
Strongly Powered by AbleSci AI