Understanding die compaction of hollow spheres using the multi-particle finite element method (MPFEM)

压实 粒子(生态学) 材料科学 离散元法 有限元法 模具(集成电路) 球体 粒径 壳体(结构) 复合材料 压力(语言学) 机械 纳米技术 结构工程 化学工程 工程类 物理 地质学 哲学 航空航天工程 海洋学 语言学
作者
Ahmet Demirtas,Gerard R. Klinzing
出处
期刊:Powder Technology [Elsevier]
卷期号:391: 34-45 被引量:8
标识
DOI:10.1016/j.powtec.2021.06.004
摘要

Powder compaction is a complex manufacturing process, even though the procedural description is simple. While different methods are used in the literature, it is still challenging to understand the governing principles. It is especially challenging for empirical studies to investigate particle-level interactions. Thus, computational analyses are required for particle-level understanding. A wide range of computational methods has been developed, such as the discrete element method (DEM) and the multi-particle finite element method (MPFEM), to characterize powder compaction at the particle level. However, a limited number of studies in the literature have analyzed powder compaction using the 3D multi-particle finite element method. Historically, these studies focus only on solid particles. The compaction behavior of hollow spheres, common to pharmaceutical spray drying, was investigated both computationally and experimentally. In the computational analysis, two different particle sizes with different shell-thicknesses were examined using the 3D multi-particle finite element method. In the experimental study, polymer hydroxypropyl methylcellulose acetate succinate (HPMCAS) particles spray-dried at two different outlet temperatures (45 °C and 80 °C) were used. The results showed that particle diameter/shell-thickness (d/w) plays an essential role in powder compaction behavior. Regardless of the particle size, reducing shell-thickness reduced the required global axial stress to reach equivalent levels of relative density. However, with a constant ratio of d/w, changes to particle size (d) did not significantly influence the global compaction behavior. Similar results were observed in experimental studies. Simulation results showed that thinner-shell particles yield early in the compaction stage. Additionally, both experimentally and computationally, a spherical hollow particle buckling effect was observed. In summary, this study provides new information on how powder compaction behavior was influenced by particle size and particle shell-thickness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助科研通管家采纳,获得10
1秒前
研友_qZ6Emn完成签到,获得积分10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
yufanhui应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
yufanhui应助科研通管家采纳,获得10
1秒前
1秒前
keyanxiaobai关注了科研通微信公众号
3秒前
端庄半凡完成签到 ,获得积分10
3秒前
轻松狗完成签到,获得积分10
5秒前
古月方源完成签到,获得积分10
6秒前
ting完成签到,获得积分10
9秒前
笑笑笑笑发布了新的文献求助10
10秒前
Maestro_S应助爱笑白开水采纳,获得10
11秒前
归诚完成签到,获得积分10
13秒前
17秒前
18秒前
搞怪的雨南完成签到,获得积分10
18秒前
20秒前
神勇寻芹发布了新的文献求助10
21秒前
JamesPei应助材料摆渡人采纳,获得10
21秒前
敏感的SCI完成签到,获得积分10
23秒前
xkhxh完成签到 ,获得积分10
25秒前
纯真硬币发布了新的文献求助10
25秒前
where发布了新的文献求助30
26秒前
黄黄完成签到,获得积分0
28秒前
28秒前
三颗板牙完成签到,获得积分10
28秒前
pp‘s完成签到 ,获得积分10
28秒前
Maestro_S应助爱笑白开水采纳,获得10
30秒前
cathy-w完成签到,获得积分10
31秒前
卷大喵完成签到,获得积分10
31秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 回忆录 2000
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
Die Elektra-Partitur von Richard Strauss : ein Lehrbuch für die Technik der dramatischen Komposition 1000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
LNG地下タンク躯体の構造性能照査指針 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3001565
求助须知:如何正确求助?哪些是违规求助? 2661260
关于积分的说明 7208254
捐赠科研通 2297263
什么是DOI,文献DOI怎么找? 1218219
科研通“疑难数据库(出版商)”最低求助积分说明 594103
版权声明 592990