结晶
材料科学
传质
沸石
化学工程
溶解
介孔材料
Crystal(编程语言)
催化作用
有机化学
色谱法
化学
计算机科学
工程类
程序设计语言
作者
Yi Zhai,Xubin Zhang,Fumin Wang,Guojun Lv,Tao Jiang,Yuzhou Wu,Mengyue Li,Mengyao Li,Qing Zhang,Yongkui Liu
标识
DOI:10.1021/acsami.1c00768
摘要
Development of economic strategy to synthesize hollow zeolite with widely tunable Si/Al ratios providing variable acidity is of great significance in industry. Here, a one-step and low-cost strategy without mesoporogen was successfully developed to synthesize single-crystal hollow ZSM-5 containing mesopores/macropores, with variable Si/Al ratios of about 14–∞ and 114–∞ at critical TPA+/SiO2 ratios of 0.05–0.1 and 0.05, respectively. This is the first time the usage of a large amount of TPAOH was avoided while breaking the traditional limitation of Si/Al ratio (25–50). The component of synthesis system and crystallization temperature acting as the vital roles in hollow structure has been confirmed by a series of characterization. Moreover, according to the investigation of the evolution process, a novel racing crystallization mechanism based on the competition relationship between surface crystallization and the internal dissolution rate was proposed for the first time. The racing crystallization mechanism and internal nonprotective aluminum become the crucial factors for synthesis. The prepared hollow ZSM-5 zeolites exhibit superior catalytic performance in the different acidity-catalyzed condensation involving large molecules between benzaldehyde and n-butyl alcohol as well as 2-hydroxyacetophenone, which is mainly attributed to the property acidity, more accessible active Al sites on the surface, and shorter diffusion path. By calculating, the effectiveness factor (η) of hollow zeolite is close to 1, further confirming its better mass transfer ability. The strategy has also been successfully extended to the synthesis of high-amount Fe-doped, Ga-doped, and B-doped hollow silicate-1.
科研通智能强力驱动
Strongly Powered by AbleSci AI