Generalized or general mixed-effect modelling of tree morality of Larix gmelinii subsp. principis-rupprechtii in Northern China

兴安落叶松 断面积 落叶松 公顷 统计 树(集合论) 数学 林业 植树造林 生态学 地理 生物 农业 数学分析
作者
Xiao Zhou,Liyong Fu,Ram Kumar Sharma,Peng He,Yuancai Lei,Jin-ping Guo
出处
期刊:Journal of Forestry Research [Springer Nature]
卷期号:32 (6): 2447-2458 被引量:4
标识
DOI:10.1007/s11676-021-01302-2
摘要

Abstract Tree mortality models play an important role in predicting tree growth and yield, but existing mortality models for Larix gmelinii subsp. principis-rupprechtii, an important species used for regeneration and afforestation in northern China, have overlooked potential regional influences on tree mortality. This study used data acquired from 102 temporary sample plots (TSPs) in natural stands of Prince Rupprecht larch in the state-owned Guandi Mountain Forest ( n = 67) and state-owned Boqiang Forest ( n = 35) in northern China. To model stand-level tree mortality, we compared seven model forms of county data. Three continuous (dominant height, plot mean diameter, and basal area per hectare) and one dummy variable with two levels (region) were used as fixed effects variables. Tree morality variations caused by forest blocks were accounted for using forest blocks as a random effect in selected models. Results showed that tree mortality significantly positively correlated with stand basal area and dominant height, but negatively correlated with stand mean diameter. Incorporating both the dummy variables and random effects into the tree mortality models significantly increased the fitting improvements, and Hurdle Poisson mixed-effects model showed the most attractive fit statistics (largest R 2 and smallest RMSE) when employing leave-one-out cross-validation. These mixed-effects dummy variable models will be useful for accurately predicting Larix tree mortality in different regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叫滚滚发布了新的文献求助10
刚刚
独特的易形完成签到,获得积分10
刚刚
1秒前
1秒前
紫麒麟完成签到,获得积分10
1秒前
Xiehf完成签到,获得积分10
1秒前
热心的冰香关注了科研通微信公众号
2秒前
草莓屁屁发布了新的文献求助10
2秒前
青汁完成签到,获得积分10
3秒前
Wuin发布了新的文献求助10
4秒前
顾矜应助秋骊采纳,获得10
5秒前
L061114完成签到,获得积分10
5秒前
小二郎应助叫滚滚采纳,获得10
5秒前
青汁发布了新的文献求助10
6秒前
by6868完成签到,获得积分10
10秒前
薰硝壤应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
11秒前
11秒前
华仔应助科研通管家采纳,获得10
11秒前
薰硝壤应助科研通管家采纳,获得10
11秒前
11秒前
12秒前
茗姜完成签到,获得积分10
12秒前
在水一方应助悦耳代真采纳,获得10
14秒前
15秒前
15秒前
15秒前
灰灰喵完成签到 ,获得积分10
16秒前
陈住气发布了新的文献求助10
18秒前
18秒前
姜夔发布了新的文献求助10
18秒前
科研通AI2S应助科研工作者采纳,获得10
19秒前
研友_gnv61n完成签到,获得积分10
20秒前
21秒前
故事的小红花完成签到,获得积分10
22秒前
22秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149194
求助须知:如何正确求助?哪些是违规求助? 2800255
关于积分的说明 7839329
捐赠科研通 2457827
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628428
版权声明 601706