Mechanisms of Degradation and Strategies for the Stabilization of Cathode–Electrolyte Interfaces in Li-Ion Batteries

电解质 电池(电) 阴极 氧化物 储能 有机自由基电池 耐久性 离子 材料科学 电极 纳米技术 降级(电信) 工程物理 化学 计算机科学 电气工程 工程类 物理 热力学 功率(物理) 复合材料 冶金 电信 有机化学 物理化学
作者
Jordi Cabana,Bob Jin Kwon,Linhua Hu
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:51 (2): 299-308 被引量:95
标识
DOI:10.1021/acs.accounts.7b00482
摘要

ConspectusUndesired reactions at the interface between a transition metal oxide cathode and a nonaqueous electrolyte bring about challenges to the performance of Li-ion batteries in the form of compromised durability. These challenges are especially severe in extreme conditions, such as above room temperature or at high potentials. The ongoing push to increase the energy density of Li-ion batteries to break through the existing barriers of application in electric vehicles creates a compelling need to address these inefficiencies. This goal requires a combination of deep knowledge of the mechanisms underpinning reactivity, and the ability to assemble multifunctional electrode systems where different components synergistically extend cycle life by imparting interfacial stability, while maintaining, or even increasing, capacity and potential of operation. The barriers toward energy storage at high density apply equally in Li-ion, the leading technology in the battery market, and in related, emerging concepts for high energy density, such as Na-ion and Mg-ion, because they also conceptually rely on electroactive transition metal oxides. Therefore, their relevance is broad and the quest for solutions inevitable.In this Account, we describe mechanisms of reaction that can degrade the interface between a Li-ion battery electrolyte and the cathode, based on an oxide with transition metals that can reach high formal oxidation states. The focus is placed on cathodes that deliver high capacity and operate at high potential because their development would enable Li-ion battery technologies with high capacity for energy storage. Electrode–electrolyte instabilities will be identified beyond the intrinsic potential windows of stability, by linking them to the electroactive transition metals present at the surface of the electrode. These instabilities result in irreversible transformations at these interfaces, with formation of insulating layers that impede transport or material loss due to corrosion. As a result, strategies that screen the reactive surface of the oxide, while reducing the transition metal content by introducing inactive ions emerge as a logical means toward interfacial stability. Yet they must be implemented in the form of thin passivating barriers to avoid unacceptable losses in storage capacity. This Account subsequently describes our current ability to build composite structures that include the active material and phases designed to address deleterious reactions. We will discuss emerging strategies that move beyond the application of such barriers on premade agglomerated powders of the material of interest. The need for these strategies will be rationalized by the goal to effectively passivate all interfaces while fully controlling the chemistry that results at the surface and its homogeneity. Such outcomes would successfully minimize interfacial losses, thereby leading to materials that exceed the charge storage and life capabilities possible today. Practically speaking, it would create opportunities to design batteries that break the existing barriers of energy density.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲲鹏完成签到 ,获得积分10
1秒前
诗筠完成签到 ,获得积分10
8秒前
可爱的函函应助姚倩倩采纳,获得10
11秒前
结实山水完成签到 ,获得积分10
14秒前
友好的牛排完成签到,获得积分10
19秒前
21秒前
姚倩倩发布了新的文献求助10
27秒前
于洋完成签到 ,获得积分10
29秒前
RSHL完成签到 ,获得积分10
33秒前
姚倩倩完成签到,获得积分10
37秒前
and999完成签到,获得积分10
38秒前
数乱了梨花完成签到 ,获得积分10
41秒前
43秒前
美丽依波完成签到 ,获得积分10
45秒前
清爽达完成签到 ,获得积分10
45秒前
优秀的dd完成签到 ,获得积分10
50秒前
跳跃的访琴完成签到 ,获得积分10
56秒前
寻寻觅觅冷冷清清完成签到 ,获得积分10
58秒前
kais完成签到 ,获得积分10
1分钟前
onevip完成签到,获得积分10
1分钟前
1分钟前
勤恳的书文完成签到 ,获得积分10
1分钟前
神可馨完成签到 ,获得积分10
1分钟前
小周不吃粥完成签到 ,获得积分10
1分钟前
斯文败类应助DduYy采纳,获得10
1分钟前
幼儿园小霸王完成签到 ,获得积分10
1分钟前
haochi完成签到,获得积分10
1分钟前
陈皮完成签到 ,获得积分10
1分钟前
lizef完成签到 ,获得积分10
1分钟前
柯科研完成签到 ,获得积分10
1分钟前
奋斗奋斗再奋斗完成签到,获得积分10
1分钟前
AXQ完成签到,获得积分10
1分钟前
大模型应助哇哇脸采纳,获得10
1分钟前
zwzxtx完成签到 ,获得积分10
1分钟前
西洲完成签到 ,获得积分10
1分钟前
mark33442完成签到,获得积分10
1分钟前
auraro完成签到 ,获得积分10
1分钟前
研友Bn完成签到 ,获得积分10
2分钟前
哇哇脸完成签到,获得积分20
2分钟前
mumuyayaguoguo完成签到 ,获得积分10
2分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167235
求助须知:如何正确求助?哪些是违规求助? 2818702
关于积分的说明 7922018
捐赠科研通 2478475
什么是DOI,文献DOI怎么找? 1320350
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443