On the Iterated Estimation of Dynamic Discrete Choice Games

估计员 数学 迭代函数 有效估计量 不变估计量 最小方差无偏估计量 三角洲法 应用数学 一致估计量 渐近分布 极大极小估计 功能(生物学) 斯坦因无偏风险估计 组合数学 统计 数学分析 进化生物学 生物
作者
Federico A. Bugni,Jackson Bunting
出处
期刊:The Review of Economic Studies [Oxford University Press]
卷期号:88 (3): 1031-1073 被引量:2
标识
DOI:10.1093/restud/rdaa032
摘要

Abstract We study the first-order asymptotic properties of a class of estimators of the structural parameters in dynamic discrete choice games. We consider $K$-stage policy iteration (PI) estimators, where $K$ denotes the number of PIs employed in the estimation. This class nests several estimators proposed in the literature. By considering a “pseudo likelihood” criterion function, our estimator becomes the $K$-pseudo maximum likelihood (PML) estimator in Aguirregabiria and Mira (2002, 2007). By considering a “minimum distance” criterion function, it defines a new $K$-minimum distance (MD) estimator, which is an iterative version of the estimators in Pesendorfer and Schmidt-Dengler (2008) and Pakes et al. (2007). First, we establish that the $K$-PML estimator is consistent and asymptotically normal for any $K \in \mathbb{N}$. This complements findings in Aguirregabiria and Mira (2007), who focus on $K=1$ and $K$ large enough to induce convergence of the estimator. Furthermore, we show under certain conditions that the asymptotic variance of the $K$-PML estimator can exhibit arbitrary patterns as a function of $K$. Second, we establish that the $K$-MD estimator is consistent and asymptotically normal for any $K \in \mathbb{N}$. For a specific weight matrix, the $K$-MD estimator has the same asymptotic distribution as the $K$-PML estimator. Our main result provides an optimal sequence of weight matrices for the $K$-MD estimator and shows that the optimally weighted $K$-MD estimator has an asymptotic distribution that is invariant to $K$. The invariance result is especially unexpected given the findings in Aguirregabiria and Mira (2007) for $K$-PML estimators. Our main result implies two new corollaries about the optimal $1$-MD estimator (derived by Pesendorfer and Schmidt-Dengler (2008)). First, the optimal $1$-MD estimator is efficient in the class of $K$-MD estimators for all $K \in \mathbb{N}$. In other words, additional PIs do not provide first-order efficiency gains relative to the optimal $1$-MD estimator. Second, the optimal $1$-MD estimator is more or equally efficient than any $K$-PML estimator for all $K \in \mathbb{N}$. Finally, the Appendix provides appropriate conditions under which the optimal $1$-MD estimator is efficient among regular estimators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
maomao发布了新的文献求助10
3秒前
onmyway发布了新的文献求助10
3秒前
田様应助longyk采纳,获得10
4秒前
可爱的函函应助G1997采纳,获得10
4秒前
pw完成签到,获得积分10
4秒前
Jack80发布了新的文献求助200
5秒前
5秒前
6秒前
Ava应助zhou采纳,获得30
6秒前
归去来兮完成签到,获得积分10
8秒前
怡然芷蝶完成签到,获得积分10
10秒前
weing发布了新的文献求助10
11秒前
所所应助zxh采纳,获得10
11秒前
liao_duoduo完成签到,获得积分10
13秒前
云帆完成签到,获得积分10
13秒前
所所应助朝阳满意采纳,获得10
13秒前
科研通AI6应助weing采纳,获得30
15秒前
蓝天发布了新的文献求助10
17秒前
17秒前
王王的狗子完成签到 ,获得积分10
18秒前
知愈完成签到,获得积分10
20秒前
梁jj发布了新的文献求助10
21秒前
cassie完成签到,获得积分10
21秒前
22秒前
23秒前
23秒前
27秒前
朝阳满意发布了新的文献求助10
27秒前
知愈发布了新的文献求助10
28秒前
danggui完成签到,获得积分10
30秒前
幽默的煎饼发布了新的文献求助100
30秒前
Diane发布了新的文献求助10
30秒前
小巧寻桃发布了新的文献求助10
31秒前
dream完成签到 ,获得积分10
31秒前
加油发布了新的文献求助10
31秒前
脑洞疼应助冷酷莫言采纳,获得10
31秒前
33秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560490
求助须知:如何正确求助?哪些是违规求助? 4645747
关于积分的说明 14676028
捐赠科研通 4586936
什么是DOI,文献DOI怎么找? 2516635
邀请新用户注册赠送积分活动 1490182
关于科研通互助平台的介绍 1461055