On the Iterated Estimation of Dynamic Discrete Choice Games

估计员 数学 迭代函数 有效估计量 不变估计量 最小方差无偏估计量 三角洲法 应用数学 一致估计量 渐近分布 极大极小估计 功能(生物学) 斯坦因无偏风险估计 组合数学 统计 数学分析 生物 进化生物学
作者
Federico A. Bugni,Jackson Bunting
出处
期刊:The Review of Economic Studies [Oxford University Press]
卷期号:88 (3): 1031-1073 被引量:2
标识
DOI:10.1093/restud/rdaa032
摘要

Abstract We study the first-order asymptotic properties of a class of estimators of the structural parameters in dynamic discrete choice games. We consider $K$-stage policy iteration (PI) estimators, where $K$ denotes the number of PIs employed in the estimation. This class nests several estimators proposed in the literature. By considering a “pseudo likelihood” criterion function, our estimator becomes the $K$-pseudo maximum likelihood (PML) estimator in Aguirregabiria and Mira (2002, 2007). By considering a “minimum distance” criterion function, it defines a new $K$-minimum distance (MD) estimator, which is an iterative version of the estimators in Pesendorfer and Schmidt-Dengler (2008) and Pakes et al. (2007). First, we establish that the $K$-PML estimator is consistent and asymptotically normal for any $K \in \mathbb{N}$. This complements findings in Aguirregabiria and Mira (2007), who focus on $K=1$ and $K$ large enough to induce convergence of the estimator. Furthermore, we show under certain conditions that the asymptotic variance of the $K$-PML estimator can exhibit arbitrary patterns as a function of $K$. Second, we establish that the $K$-MD estimator is consistent and asymptotically normal for any $K \in \mathbb{N}$. For a specific weight matrix, the $K$-MD estimator has the same asymptotic distribution as the $K$-PML estimator. Our main result provides an optimal sequence of weight matrices for the $K$-MD estimator and shows that the optimally weighted $K$-MD estimator has an asymptotic distribution that is invariant to $K$. The invariance result is especially unexpected given the findings in Aguirregabiria and Mira (2007) for $K$-PML estimators. Our main result implies two new corollaries about the optimal $1$-MD estimator (derived by Pesendorfer and Schmidt-Dengler (2008)). First, the optimal $1$-MD estimator is efficient in the class of $K$-MD estimators for all $K \in \mathbb{N}$. In other words, additional PIs do not provide first-order efficiency gains relative to the optimal $1$-MD estimator. Second, the optimal $1$-MD estimator is more or equally efficient than any $K$-PML estimator for all $K \in \mathbb{N}$. Finally, the Appendix provides appropriate conditions under which the optimal $1$-MD estimator is efficient among regular estimators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cocolu应助hou采纳,获得10
1秒前
受伤南霜完成签到,获得积分10
1秒前
1秒前
星辰大海应助arsenal采纳,获得10
1秒前
fillippo99应助许鑫蓁采纳,获得30
2秒前
啊张应助xieqq00采纳,获得10
2秒前
一心向雨完成签到,获得积分20
2秒前
嗯呢完成签到 ,获得积分10
2秒前
Vendetta完成签到,获得积分10
2秒前
轩辕疾发布了新的文献求助10
3秒前
积极的奇异果完成签到,获得积分10
3秒前
3秒前
hellosci666完成签到,获得积分10
3秒前
syk发布了新的文献求助30
3秒前
77paocai完成签到,获得积分10
3秒前
4秒前
夏云梦发布了新的文献求助20
4秒前
yyyyy发布了新的文献求助10
4秒前
艺术家完成签到,获得积分10
5秒前
动听的不乐完成签到,获得积分10
5秒前
南念发布了新的文献求助10
5秒前
彭于晏应助一心向雨采纳,获得10
6秒前
antonx应助77采纳,获得10
6秒前
yyymmma发布了新的文献求助10
7秒前
李健的小迷弟应助777采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
调研昵称发布了新的文献求助10
10秒前
在水一方应助luxiaoyu采纳,获得10
10秒前
单薄的誉完成签到,获得积分10
10秒前
佳妹儿完成签到,获得积分10
11秒前
11秒前
11秒前
科特柯本关注了科研通微信公众号
12秒前
bkagyin应助guo采纳,获得10
12秒前
FiroZhang完成签到,获得积分10
12秒前
三一完成签到,获得积分10
13秒前
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309200
求助须知:如何正确求助?哪些是违规求助? 2942533
关于积分的说明 8509490
捐赠科研通 2617712
什么是DOI,文献DOI怎么找? 1430268
科研通“疑难数据库(出版商)”最低求助积分说明 664108
邀请新用户注册赠送积分活动 649272