On the Iterated Estimation of Dynamic Discrete Choice Games

估计员 数学 迭代函数 有效估计量 不变估计量 最小方差无偏估计量 三角洲法 应用数学 一致估计量 渐近分布 极大极小估计 功能(生物学) 斯坦因无偏风险估计 组合数学 统计 数学分析 进化生物学 生物
作者
Federico A. Bugni,Jackson Bunting
出处
期刊:The Review of Economic Studies [Oxford University Press]
卷期号:88 (3): 1031-1073 被引量:2
标识
DOI:10.1093/restud/rdaa032
摘要

Abstract We study the first-order asymptotic properties of a class of estimators of the structural parameters in dynamic discrete choice games. We consider $K$-stage policy iteration (PI) estimators, where $K$ denotes the number of PIs employed in the estimation. This class nests several estimators proposed in the literature. By considering a “pseudo likelihood” criterion function, our estimator becomes the $K$-pseudo maximum likelihood (PML) estimator in Aguirregabiria and Mira (2002, 2007). By considering a “minimum distance” criterion function, it defines a new $K$-minimum distance (MD) estimator, which is an iterative version of the estimators in Pesendorfer and Schmidt-Dengler (2008) and Pakes et al. (2007). First, we establish that the $K$-PML estimator is consistent and asymptotically normal for any $K \in \mathbb{N}$. This complements findings in Aguirregabiria and Mira (2007), who focus on $K=1$ and $K$ large enough to induce convergence of the estimator. Furthermore, we show under certain conditions that the asymptotic variance of the $K$-PML estimator can exhibit arbitrary patterns as a function of $K$. Second, we establish that the $K$-MD estimator is consistent and asymptotically normal for any $K \in \mathbb{N}$. For a specific weight matrix, the $K$-MD estimator has the same asymptotic distribution as the $K$-PML estimator. Our main result provides an optimal sequence of weight matrices for the $K$-MD estimator and shows that the optimally weighted $K$-MD estimator has an asymptotic distribution that is invariant to $K$. The invariance result is especially unexpected given the findings in Aguirregabiria and Mira (2007) for $K$-PML estimators. Our main result implies two new corollaries about the optimal $1$-MD estimator (derived by Pesendorfer and Schmidt-Dengler (2008)). First, the optimal $1$-MD estimator is efficient in the class of $K$-MD estimators for all $K \in \mathbb{N}$. In other words, additional PIs do not provide first-order efficiency gains relative to the optimal $1$-MD estimator. Second, the optimal $1$-MD estimator is more or equally efficient than any $K$-PML estimator for all $K \in \mathbb{N}$. Finally, the Appendix provides appropriate conditions under which the optimal $1$-MD estimator is efficient among regular estimators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
engine完成签到,获得积分10
1秒前
1秒前
所所应助pppppop采纳,获得10
1秒前
3秒前
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
传奇3应助彪壮的慕山采纳,获得10
4秒前
5秒前
5秒前
科研人发布了新的文献求助10
5秒前
酷波er应助懒123采纳,获得10
5秒前
6秒前
6秒前
gffh完成签到,获得积分10
7秒前
陈章zz发布了新的文献求助20
7秒前
He完成签到,获得积分10
8秒前
8秒前
Leon发布了新的文献求助30
8秒前
领导范儿应助形容采纳,获得10
8秒前
斯文败类应助草莓苹果采纳,获得10
9秒前
死亦生矣发布了新的文献求助10
10秒前
YWD发布了新的文献求助10
10秒前
tttt发布了新的文献求助10
10秒前
世界小奇发布了新的文献求助10
11秒前
Yuan发布了新的文献求助10
11秒前
汉堡包应助感动冰岚采纳,获得10
12秒前
科研通AI6应助jiang采纳,获得10
12秒前
淡淡的无敌完成签到 ,获得积分10
14秒前
14秒前
天天快乐应助kkyy采纳,获得30
15秒前
autism发布了新的文献求助10
15秒前
独特的水香完成签到,获得积分10
15秒前
脑洞疼应助背后的映寒采纳,获得10
15秒前
华仔应助Sing采纳,获得10
15秒前
15秒前
15秒前
16秒前
lyx完成签到,获得积分20
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526107
求助须知:如何正确求助?哪些是违规求助? 4616283
关于积分的说明 14552778
捐赠科研通 4554503
什么是DOI,文献DOI怎么找? 2495919
邀请新用户注册赠送积分活动 1476266
关于科研通互助平台的介绍 1447928