On the Iterated Estimation of Dynamic Discrete Choice Games

估计员 数学 迭代函数 有效估计量 不变估计量 最小方差无偏估计量 三角洲法 应用数学 一致估计量 渐近分布 极大极小估计 功能(生物学) 斯坦因无偏风险估计 组合数学 统计 数学分析 进化生物学 生物
作者
Federico A. Bugni,Jackson Bunting
出处
期刊:The Review of Economic Studies [Oxford University Press]
卷期号:88 (3): 1031-1073 被引量:2
标识
DOI:10.1093/restud/rdaa032
摘要

Abstract We study the first-order asymptotic properties of a class of estimators of the structural parameters in dynamic discrete choice games. We consider $K$-stage policy iteration (PI) estimators, where $K$ denotes the number of PIs employed in the estimation. This class nests several estimators proposed in the literature. By considering a “pseudo likelihood” criterion function, our estimator becomes the $K$-pseudo maximum likelihood (PML) estimator in Aguirregabiria and Mira (2002, 2007). By considering a “minimum distance” criterion function, it defines a new $K$-minimum distance (MD) estimator, which is an iterative version of the estimators in Pesendorfer and Schmidt-Dengler (2008) and Pakes et al. (2007). First, we establish that the $K$-PML estimator is consistent and asymptotically normal for any $K \in \mathbb{N}$. This complements findings in Aguirregabiria and Mira (2007), who focus on $K=1$ and $K$ large enough to induce convergence of the estimator. Furthermore, we show under certain conditions that the asymptotic variance of the $K$-PML estimator can exhibit arbitrary patterns as a function of $K$. Second, we establish that the $K$-MD estimator is consistent and asymptotically normal for any $K \in \mathbb{N}$. For a specific weight matrix, the $K$-MD estimator has the same asymptotic distribution as the $K$-PML estimator. Our main result provides an optimal sequence of weight matrices for the $K$-MD estimator and shows that the optimally weighted $K$-MD estimator has an asymptotic distribution that is invariant to $K$. The invariance result is especially unexpected given the findings in Aguirregabiria and Mira (2007) for $K$-PML estimators. Our main result implies two new corollaries about the optimal $1$-MD estimator (derived by Pesendorfer and Schmidt-Dengler (2008)). First, the optimal $1$-MD estimator is efficient in the class of $K$-MD estimators for all $K \in \mathbb{N}$. In other words, additional PIs do not provide first-order efficiency gains relative to the optimal $1$-MD estimator. Second, the optimal $1$-MD estimator is more or equally efficient than any $K$-PML estimator for all $K \in \mathbb{N}$. Finally, the Appendix provides appropriate conditions under which the optimal $1$-MD estimator is efficient among regular estimators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晫猗发布了新的文献求助20
刚刚
科研通AI6应助小马采纳,获得10
刚刚
bbbuc发布了新的文献求助10
1秒前
正宗大肥鳖完成签到,获得积分20
1秒前
2秒前
2秒前
cqsuper完成签到,获得积分10
2秒前
搜集达人应助shxygpz采纳,获得10
2秒前
万能图书馆应助WQQ采纳,获得10
5秒前
6秒前
6秒前
7秒前
7秒前
殷润琳发布了新的文献求助10
8秒前
琳琳完成签到,获得积分20
8秒前
李捏完成签到,获得积分20
9秒前
鹏虫虫发布了新的文献求助10
10秒前
英俊的铭应助六尺巷采纳,获得10
11秒前
不吃橘子发布了新的文献求助10
11秒前
琳琳发布了新的文献求助10
12秒前
sqq发布了新的文献求助10
12秒前
我是老大应助涨涨涨采纳,获得10
13秒前
随便完成签到 ,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
深情安青应助limbooo采纳,获得10
16秒前
bkagyin应助看看看采纳,获得10
17秒前
18秒前
18秒前
18秒前
逐梦科研圈完成签到 ,获得积分10
19秒前
20秒前
小马完成签到,获得积分10
20秒前
爱搬玉米发布了新的文献求助10
20秒前
文艺的立果完成签到,获得积分10
20秒前
Owen应助不再是纳米的正肽采纳,获得10
21秒前
21秒前
思源应助EMMA采纳,获得10
21秒前
福斯卡发布了新的文献求助30
21秒前
21秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443045
求助须知:如何正确求助?哪些是违规求助? 4553014
关于积分的说明 14240267
捐赠科研通 4474566
什么是DOI,文献DOI怎么找? 2452011
邀请新用户注册赠送积分活动 1442958
关于科研通互助平台的介绍 1418682