Networked Drone Cameras for Sports Streaming

无人机 计算机科学 实时计算 吞吐量 控制器(灌溉) 频道(广播) 计算机网络 无线 电信 遗传学 生物 农学
作者
Xiaoli Wang,Aakanksha Chowdhery,Mung Chiang
标识
DOI:10.1109/icdcs.2017.200
摘要

A network of drone cameras can be deployed to cover live events, such as high-action sports game played on a large field, but managing networked drone cameras in real-time is challenging. Distributed approaches yield suboptimal solutions from lack of coordination but coordination with a centralized controller incurs round-trip latencies of several hundreds of milliseconds over a wireless channel. We propose a fog-networking based system architecture to automatically coordinate a network of drones equipped with cameras to capture and broadcast the dynamically changing scenes of interest in a sports game. We design both optimal and practical algorithms to balance the tradeoff between two metrics: coverage of the most important scenes and streamed video bitrate. To compensate for network round-trip latencies, the centralized controller uses a predictive approach to predict which locations the drones should cover next. The controller maximizes video bitrate by associating each drone to an optimally matched server and dynamically re-assigns drones as relay nodes to boost the throughput in low-throughput scenarios. This dynamic assignment at centralized controller occurs at slower time-scale permitted by round-trip latencies, while the predictive approach and drones' local decision ensures that the system works in real-time. Experimental results over tens of flights on the field suggest our system can achieve really good performance, for example, 8 drones can achieve a tradeoff of 94% coverage and (on average) 2K video support at 20 Mbps by optimizing between coverage and throughput. By dynamically allocating drones to cover the game or act as relays, our system also demonstrates a 2x gain over systems maximizing static coverage alone that achieves only 9 Mbps video throughput.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ayayaya发布了新的文献求助10
1秒前
1秒前
2秒前
李健应助荣荣采纳,获得10
2秒前
闻山发布了新的文献求助10
2秒前
3秒前
专注的泥猴桃完成签到,获得积分10
3秒前
单申奥完成签到 ,获得积分20
3秒前
3秒前
儿茶素发布了新的文献求助10
3秒前
马梦秋完成签到,获得积分10
3秒前
小鱼发布了新的文献求助10
3秒前
3秒前
redflower发布了新的文献求助10
4秒前
论英雄完成签到,获得积分10
4秒前
哦豁完成签到 ,获得积分10
4秒前
4秒前
立na发布了新的文献求助30
4秒前
5秒前
帅b发布了新的文献求助10
5秒前
胡春柳完成签到,获得积分10
5秒前
Chroninus完成签到,获得积分10
5秒前
5秒前
上官若男应助橘子林采纳,获得10
6秒前
6秒前
佐罗完成签到 ,获得积分10
6秒前
6秒前
852应助高源伯采纳,获得30
6秒前
XianShen发布了新的文献求助10
6秒前
墨易完成签到,获得积分10
6秒前
qingchi完成签到,获得积分10
6秒前
啊懂发布了新的文献求助10
7秒前
1223发布了新的文献求助10
7秒前
英姑应助许戈追求进步采纳,获得10
7秒前
8秒前
七叶树完成签到,获得积分10
8秒前
8秒前
爆米花应助清爽泥猴桃采纳,获得10
8秒前
皮蛋完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625139
求助须知:如何正确求助?哪些是违规求助? 4710965
关于积分的说明 14953364
捐赠科研通 4779073
什么是DOI,文献DOI怎么找? 2553598
邀请新用户注册赠送积分活动 1515504
关于科研通互助平台的介绍 1475786