Networked Drone Cameras for Sports Streaming

无人机 计算机科学 实时计算 吞吐量 控制器(灌溉) 频道(广播) 计算机网络 无线 电信 农学 遗传学 生物
作者
Xiaoli Wang,Aakanksha Chowdhery,Mung Chiang
标识
DOI:10.1109/icdcs.2017.200
摘要

A network of drone cameras can be deployed to cover live events, such as high-action sports game played on a large field, but managing networked drone cameras in real-time is challenging. Distributed approaches yield suboptimal solutions from lack of coordination but coordination with a centralized controller incurs round-trip latencies of several hundreds of milliseconds over a wireless channel. We propose a fog-networking based system architecture to automatically coordinate a network of drones equipped with cameras to capture and broadcast the dynamically changing scenes of interest in a sports game. We design both optimal and practical algorithms to balance the tradeoff between two metrics: coverage of the most important scenes and streamed video bitrate. To compensate for network round-trip latencies, the centralized controller uses a predictive approach to predict which locations the drones should cover next. The controller maximizes video bitrate by associating each drone to an optimally matched server and dynamically re-assigns drones as relay nodes to boost the throughput in low-throughput scenarios. This dynamic assignment at centralized controller occurs at slower time-scale permitted by round-trip latencies, while the predictive approach and drones' local decision ensures that the system works in real-time. Experimental results over tens of flights on the field suggest our system can achieve really good performance, for example, 8 drones can achieve a tradeoff of 94% coverage and (on average) 2K video support at 20 Mbps by optimizing between coverage and throughput. By dynamically allocating drones to cover the game or act as relays, our system also demonstrates a 2x gain over systems maximizing static coverage alone that achieves only 9 Mbps video throughput.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
肖雪依完成签到,获得积分10
刚刚
深情安青应助张小愚采纳,获得10
1秒前
Owen应助Jacquielin采纳,获得10
2秒前
3秒前
张英俊发布了新的文献求助10
3秒前
lyf发布了新的文献求助10
3秒前
糊糊完成签到,获得积分20
3秒前
3秒前
我是老大应助劳永杰采纳,获得10
4秒前
4秒前
EthanChan发布了新的文献求助10
5秒前
辣椒完成签到,获得积分10
5秒前
6秒前
风荏完成签到,获得积分10
6秒前
开心成威发布了新的文献求助10
7秒前
阿水完成签到 ,获得积分10
7秒前
超帅的龙猫完成签到,获得积分20
9秒前
张英俊完成签到,获得积分20
9秒前
9秒前
烦了发布了新的文献求助10
10秒前
风荏发布了新的文献求助10
10秒前
11秒前
啦啦啦4396完成签到,获得积分20
12秒前
Orange应助XHH1994采纳,获得10
14秒前
皮崇知发布了新的文献求助10
16秒前
细腻老四发布了新的文献求助10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
jinboyuan应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
勿明应助科研通管家采纳,获得30
16秒前
核桃应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
djiwisksk66应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
17秒前
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
20秒前
阿巴完成签到 ,获得积分10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959210
求助须知:如何正确求助?哪些是违规求助? 3505538
关于积分的说明 11124306
捐赠科研通 3237248
什么是DOI,文献DOI怎么找? 1789010
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824