Networked Drone Cameras for Sports Streaming

无人机 计算机科学 实时计算 吞吐量 控制器(灌溉) 频道(广播) 计算机网络 无线 电信 农学 遗传学 生物
作者
Xiaoli Wang,Aakanksha Chowdhery,Mung Chiang
标识
DOI:10.1109/icdcs.2017.200
摘要

A network of drone cameras can be deployed to cover live events, such as high-action sports game played on a large field, but managing networked drone cameras in real-time is challenging. Distributed approaches yield suboptimal solutions from lack of coordination but coordination with a centralized controller incurs round-trip latencies of several hundreds of milliseconds over a wireless channel. We propose a fog-networking based system architecture to automatically coordinate a network of drones equipped with cameras to capture and broadcast the dynamically changing scenes of interest in a sports game. We design both optimal and practical algorithms to balance the tradeoff between two metrics: coverage of the most important scenes and streamed video bitrate. To compensate for network round-trip latencies, the centralized controller uses a predictive approach to predict which locations the drones should cover next. The controller maximizes video bitrate by associating each drone to an optimally matched server and dynamically re-assigns drones as relay nodes to boost the throughput in low-throughput scenarios. This dynamic assignment at centralized controller occurs at slower time-scale permitted by round-trip latencies, while the predictive approach and drones' local decision ensures that the system works in real-time. Experimental results over tens of flights on the field suggest our system can achieve really good performance, for example, 8 drones can achieve a tradeoff of 94% coverage and (on average) 2K video support at 20 Mbps by optimizing between coverage and throughput. By dynamically allocating drones to cover the game or act as relays, our system also demonstrates a 2x gain over systems maximizing static coverage alone that achieves only 9 Mbps video throughput.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助松亚采纳,获得10
刚刚
吕广德完成签到,获得积分10
刚刚
英俊的铭应助zz采纳,获得10
刚刚
科研通AI2S应助唐妮采纳,获得10
刚刚
薄荷蓝完成签到,获得积分10
1秒前
1秒前
1秒前
小海贼完成签到 ,获得积分10
1秒前
秋秋发布了新的文献求助10
2秒前
2秒前
小蘑菇应助wzwz采纳,获得10
3秒前
3秒前
和成发布了新的文献求助10
3秒前
桃桃完成签到 ,获得积分20
3秒前
KKWeng发布了新的文献求助10
3秒前
4秒前
科研猿发布了新的文献求助20
5秒前
碧蓝可乐发布了新的文献求助10
5秒前
wuhaixia完成签到,获得积分10
7秒前
武雨寒发布了新的文献求助10
7秒前
duj622发布了新的文献求助10
7秒前
2248388622完成签到,获得积分10
8秒前
you发布了新的文献求助10
8秒前
Bob222发布了新的文献求助20
8秒前
8秒前
一路硕博发布了新的文献求助20
8秒前
9秒前
醉书生发布了新的文献求助10
9秒前
Wanpy完成签到 ,获得积分10
10秒前
带领大家完成签到,获得积分10
10秒前
mimi123409发布了新的社区帖子
10秒前
11秒前
淡然的冰海完成签到,获得积分10
12秒前
大芳儿完成签到,获得积分10
13秒前
嗯哼完成签到,获得积分10
13秒前
松亚发布了新的文献求助10
13秒前
14秒前
天天天蓝完成签到 ,获得积分10
14秒前
玛丽洁发布了新的文献求助10
14秒前
2248388622发布了新的文献求助10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143246
求助须知:如何正确求助?哪些是违规求助? 2794391
关于积分的说明 7811052
捐赠科研通 2450640
什么是DOI,文献DOI怎么找? 1303909
科研通“疑难数据库(出版商)”最低求助积分说明 627144
版权声明 601386