Networked Drone Cameras for Sports Streaming

无人机 计算机科学 实时计算 吞吐量 控制器(灌溉) 频道(广播) 计算机网络 无线 电信 农学 遗传学 生物
作者
Xiaoli Wang,Aakanksha Chowdhery,Mung Chiang
标识
DOI:10.1109/icdcs.2017.200
摘要

A network of drone cameras can be deployed to cover live events, such as high-action sports game played on a large field, but managing networked drone cameras in real-time is challenging. Distributed approaches yield suboptimal solutions from lack of coordination but coordination with a centralized controller incurs round-trip latencies of several hundreds of milliseconds over a wireless channel. We propose a fog-networking based system architecture to automatically coordinate a network of drones equipped with cameras to capture and broadcast the dynamically changing scenes of interest in a sports game. We design both optimal and practical algorithms to balance the tradeoff between two metrics: coverage of the most important scenes and streamed video bitrate. To compensate for network round-trip latencies, the centralized controller uses a predictive approach to predict which locations the drones should cover next. The controller maximizes video bitrate by associating each drone to an optimally matched server and dynamically re-assigns drones as relay nodes to boost the throughput in low-throughput scenarios. This dynamic assignment at centralized controller occurs at slower time-scale permitted by round-trip latencies, while the predictive approach and drones' local decision ensures that the system works in real-time. Experimental results over tens of flights on the field suggest our system can achieve really good performance, for example, 8 drones can achieve a tradeoff of 94% coverage and (on average) 2K video support at 20 Mbps by optimizing between coverage and throughput. By dynamically allocating drones to cover the game or act as relays, our system also demonstrates a 2x gain over systems maximizing static coverage alone that achieves only 9 Mbps video throughput.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hehsk完成签到,获得积分10
刚刚
无限鞅完成签到,获得积分20
刚刚
1秒前
DY完成签到 ,获得积分10
2秒前
郑仕完成签到,获得积分10
2秒前
2秒前
进取拼搏发布了新的文献求助10
3秒前
顺顺发布了新的文献求助10
3秒前
3秒前
在水一方应助涛涛采纳,获得10
3秒前
英姑应助义气的傲松采纳,获得10
4秒前
4秒前
哭泣蛋挞完成签到 ,获得积分10
5秒前
sweetbearm应助通~采纳,获得10
5秒前
田様应助吃饭用大碗采纳,获得10
6秒前
6秒前
7秒前
8秒前
阿斯蒂和琴酒完成签到 ,获得积分10
8秒前
珂珂发布了新的文献求助10
10秒前
10秒前
迟大猫应助我是站长才怪采纳,获得30
10秒前
11秒前
BaekHyun发布了新的文献求助10
11秒前
背后翠梅发布了新的文献求助30
11秒前
CCR发布了新的文献求助10
11秒前
su发布了新的文献求助10
13秒前
善学以致用应助钰c采纳,获得10
13秒前
Fundamental完成签到,获得积分20
14秒前
通~发布了新的文献求助10
14秒前
Akim应助阿屁屁猪采纳,获得10
14秒前
15秒前
细雨听风发布了新的文献求助10
15秒前
15秒前
英俊的小松鼠完成签到,获得积分10
15秒前
16秒前
18秒前
cc完成签到,获得积分20
18秒前
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808