中性粒细胞胞外陷阱
血栓
中性粒细胞弹性蛋白酶
离体
组织纤溶酶原激活剂
细胞外
医学
弹性蛋白酶
冲程(发动机)
病理
免疫学
生物
体内
内科学
炎症
细胞生物学
生物化学
工程类
生物技术
酶
机械工程
作者
Elodie Laridan,Frederik Denorme,Linda Desender,Olivier François,Tommy Andersson,Hans Deckmyn,Karen Vanhoorelbeke,Simon F. De Meyer
摘要
Objective Neutrophil extracellular traps (NETs) have been shown to promote thrombus formation. Little is known about the exact composition of thrombi that cause ischemic stroke. In particular, no information is yet available on the presence of NETs in cerebral occlusions. Such information is, however, essential to improve current thrombolytic therapy with tissue plasminogen activator (t‐PA). This study aimed at investigating the presence of neutrophils and more specifically NETs in ischemic stroke thrombi. Methods Sixty‐eight thrombi retrieved from ischemic stroke patients undergoing endovascular treatment were characterized by immunostaining using neutrophil markers (CD66b and neutrophil elastase) and NET markers (citrullinated histone H3 [H3Cit] and extracellular DNA). Neutrophils and NETs were quantified. In addition, extracellular DNA was targeted by performing ex vivo lysis of retrieved thrombi with DNase 1 and t‐PA. Results Neutrophils were detected extensively throughout all thrombi. H3Cit, a hallmark of NETs, was observed in almost all thrombi. H3Cit‐positive area varied up to 13.45% of total thrombus area. Colocalization of H3Cit with extracellular DNA released from neutrophils confirmed the specific presence of NETs. H3Cit was more abundant in thrombi of cardioembolic origin compared to other etiologies. Older thrombi contained significantly more neutrophils and H3Cit compared to fresh thrombi. Interestingly, ex vivo lysis of patient thrombi was more successful when adding DNase 1 to standard t‐PA. Interpretation Neutrophils and NETs form important constituents of cerebral thrombi. Targeting of NETs with DNase 1 might have prothrombolytic potential in treatment of acute ischemic stroke. Ann Neurol 2017;82:223–232
科研通智能强力驱动
Strongly Powered by AbleSci AI