Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images

医学 卷积神经网络 癌症 人工智能 放射科 胃癌 外科肿瘤学 内窥镜检查 内科学 计算机科学
作者
Toshiaki Hirasawa,Kazuharu Aoyama,Tetsuya Tanimoto,Soichiro Ishihara,Satoki Shichijo,Tsuyoshi Ozawa,Tatsuya Ohnishi,Mitsuhiro Fujishiro,Keigo Matsuo,Junko Fujisaki,Tomohiro Tada
出处
期刊:Gastric Cancer [Springer Nature]
卷期号:21 (4): 653-660 被引量:623
标识
DOI:10.1007/s10120-018-0793-2
摘要

Image recognition using artificial intelligence with deep learning through convolutional neural networks (CNNs) has dramatically improved and been increasingly applied to medical fields for diagnostic imaging. We developed a CNN that can automatically detect gastric cancer in endoscopic images.A CNN-based diagnostic system was constructed based on Single Shot MultiBox Detector architecture and trained using 13,584 endoscopic images of gastric cancer. To evaluate the diagnostic accuracy, an independent test set of 2296 stomach images collected from 69 consecutive patients with 77 gastric cancer lesions was applied to the constructed CNN.The CNN required 47 s to analyze 2296 test images. The CNN correctly diagnosed 71 of 77 gastric cancer lesions with an overall sensitivity of 92.2%, and 161 non-cancerous lesions were detected as gastric cancer, resulting in a positive predictive value of 30.6%. Seventy of the 71 lesions (98.6%) with a diameter of 6 mm or more as well as all invasive cancers were correctly detected. All missed lesions were superficially depressed and differentiated-type intramucosal cancers that were difficult to distinguish from gastritis even for experienced endoscopists. Nearly half of the false-positive lesions were gastritis with changes in color tone or an irregular mucosal surface.The constructed CNN system for detecting gastric cancer could process numerous stored endoscopic images in a very short time with a clinically relevant diagnostic ability. It may be well applicable to daily clinical practice to reduce the burden of endoscopists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cheong完成签到,获得积分10
1秒前
1秒前
超级天磊完成签到,获得积分10
3秒前
CQ完成签到 ,获得积分10
3秒前
lhhhhh完成签到,获得积分10
5秒前
专注德地发布了新的文献求助10
5秒前
Maestro_S应助科研通管家采纳,获得10
6秒前
Maestro_S应助科研通管家采纳,获得10
6秒前
Maestro_S应助科研通管家采纳,获得10
6秒前
Maestro_S应助科研通管家采纳,获得10
6秒前
xiaoyi完成签到 ,获得积分10
6秒前
Maestro_S应助科研通管家采纳,获得10
6秒前
Maestro_S应助科研通管家采纳,获得10
6秒前
Maestro_S应助科研通管家采纳,获得10
6秒前
untilyou完成签到,获得积分10
10秒前
慢慢完成签到,获得积分10
17秒前
ninomae完成签到 ,获得积分10
18秒前
LL完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
害怕的小刺猬完成签到 ,获得积分10
21秒前
如意的手套完成签到,获得积分10
21秒前
栗子完成签到,获得积分10
25秒前
jenna完成签到,获得积分10
27秒前
Karl发布了新的文献求助30
28秒前
平常毛衣完成签到,获得积分10
30秒前
五月完成签到 ,获得积分10
31秒前
别致的小五完成签到 ,获得积分10
31秒前
超级ddl战士完成签到 ,获得积分10
31秒前
XU博士完成签到,获得积分10
32秒前
胖虎完成签到,获得积分10
34秒前
ws_WS_完成签到 ,获得积分10
34秒前
斯文败类应助武雨寒采纳,获得10
36秒前
王蝶完成签到 ,获得积分10
39秒前
单纯的小土豆完成签到 ,获得积分10
39秒前
tyyyyyy完成签到,获得积分10
40秒前
42秒前
Harlotte完成签到 ,获得积分10
42秒前
量子星尘发布了新的文献求助10
43秒前
无极微光应助huqing采纳,获得20
50秒前
kingfly2010完成签到,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628787
求助须知:如何正确求助?哪些是违规求助? 4718375
关于积分的说明 14964910
捐赠科研通 4786643
什么是DOI,文献DOI怎么找? 2555951
邀请新用户注册赠送积分活动 1517087
关于科研通互助平台的介绍 1477841