Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images

医学 卷积神经网络 癌症 人工智能 放射科 胃癌 外科肿瘤学 内窥镜检查 内科学 计算机科学
作者
Toshiaki Hirasawa,Kazuharu Aoyama,Tetsuya Tanimoto,Soichiro Ishihara,Satoki Shichijo,Tsuyoshi Ozawa,Tatsuya Ohnishi,Mitsuhiro Fujishiro,Keigo Matsuo,Junko Fujisaki,Tomohiro Tada
出处
期刊:Gastric Cancer [Springer Nature]
卷期号:21 (4): 653-660 被引量:623
标识
DOI:10.1007/s10120-018-0793-2
摘要

Image recognition using artificial intelligence with deep learning through convolutional neural networks (CNNs) has dramatically improved and been increasingly applied to medical fields for diagnostic imaging. We developed a CNN that can automatically detect gastric cancer in endoscopic images.A CNN-based diagnostic system was constructed based on Single Shot MultiBox Detector architecture and trained using 13,584 endoscopic images of gastric cancer. To evaluate the diagnostic accuracy, an independent test set of 2296 stomach images collected from 69 consecutive patients with 77 gastric cancer lesions was applied to the constructed CNN.The CNN required 47 s to analyze 2296 test images. The CNN correctly diagnosed 71 of 77 gastric cancer lesions with an overall sensitivity of 92.2%, and 161 non-cancerous lesions were detected as gastric cancer, resulting in a positive predictive value of 30.6%. Seventy of the 71 lesions (98.6%) with a diameter of 6 mm or more as well as all invasive cancers were correctly detected. All missed lesions were superficially depressed and differentiated-type intramucosal cancers that were difficult to distinguish from gastritis even for experienced endoscopists. Nearly half of the false-positive lesions were gastritis with changes in color tone or an irregular mucosal surface.The constructed CNN system for detecting gastric cancer could process numerous stored endoscopic images in a very short time with a clinically relevant diagnostic ability. It may be well applicable to daily clinical practice to reduce the burden of endoscopists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魏笑白完成签到 ,获得积分10
1秒前
董小李完成签到,获得积分10
1秒前
1秒前
WJ完成签到,获得积分10
2秒前
Rose_Yang完成签到 ,获得积分10
2秒前
万能图书馆应助newfat采纳,获得10
2秒前
2秒前
快乐乐发布了新的文献求助10
2秒前
jiwn完成签到,获得积分10
3秒前
文献狗发布了新的文献求助10
3秒前
3秒前
Hardendotey发布了新的文献求助10
3秒前
直率皓轩完成签到,获得积分20
3秒前
homeless完成签到 ,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
Vicky完成签到,获得积分10
6秒前
活力成败完成签到,获得积分10
6秒前
平芜尽处发布了新的文献求助10
6秒前
Ed23发布了新的文献求助10
6秒前
缓慢如南完成签到,获得积分0
6秒前
冰勾板勾完成签到,获得积分10
6秒前
Kelly完成签到,获得积分10
7秒前
edtaa完成签到 ,获得积分10
7秒前
CL完成签到,获得积分10
7秒前
阔达的道之完成签到,获得积分10
7秒前
是我不得开心妍完成签到 ,获得积分10
7秒前
顾闭月完成签到,获得积分10
8秒前
斯文败类应助自由的碧蓉采纳,获得10
8秒前
Aria完成签到,获得积分10
8秒前
8秒前
yxk完成签到,获得积分10
8秒前
8秒前
SamYang完成签到,获得积分10
8秒前
发AM完成签到 ,获得积分10
8秒前
xxd完成签到,获得积分10
8秒前
WN完成签到,获得积分10
9秒前
上官若男应助kulei采纳,获得10
9秒前
东坡发布了新的文献求助10
9秒前
狂野砖头发布了新的文献求助10
10秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585174
求助须知:如何正确求助?哪些是违规求助? 4669007
关于积分的说明 14774142
捐赠科研通 4617066
什么是DOI,文献DOI怎么找? 2530387
邀请新用户注册赠送积分活动 1499167
关于科研通互助平台的介绍 1467659