亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images

医学 卷积神经网络 癌症 人工智能 放射科 胃癌 外科肿瘤学 内窥镜检查 内科学 计算机科学
作者
Toshiaki Hirasawa,Kazuharu Aoyama,Tetsuya Tanimoto,Soichiro Ishihara,Satoki Shichijo,Tsuyoshi Ozawa,Tatsuya Ohnishi,Mitsuhiro Fujishiro,Keigo Matsuo,Junko Fujisaki,Tomohiro Tada
出处
期刊:Gastric Cancer [Springer Nature]
卷期号:21 (4): 653-660 被引量:623
标识
DOI:10.1007/s10120-018-0793-2
摘要

Image recognition using artificial intelligence with deep learning through convolutional neural networks (CNNs) has dramatically improved and been increasingly applied to medical fields for diagnostic imaging. We developed a CNN that can automatically detect gastric cancer in endoscopic images.A CNN-based diagnostic system was constructed based on Single Shot MultiBox Detector architecture and trained using 13,584 endoscopic images of gastric cancer. To evaluate the diagnostic accuracy, an independent test set of 2296 stomach images collected from 69 consecutive patients with 77 gastric cancer lesions was applied to the constructed CNN.The CNN required 47 s to analyze 2296 test images. The CNN correctly diagnosed 71 of 77 gastric cancer lesions with an overall sensitivity of 92.2%, and 161 non-cancerous lesions were detected as gastric cancer, resulting in a positive predictive value of 30.6%. Seventy of the 71 lesions (98.6%) with a diameter of 6 mm or more as well as all invasive cancers were correctly detected. All missed lesions were superficially depressed and differentiated-type intramucosal cancers that were difficult to distinguish from gastritis even for experienced endoscopists. Nearly half of the false-positive lesions were gastritis with changes in color tone or an irregular mucosal surface.The constructed CNN system for detecting gastric cancer could process numerous stored endoscopic images in a very short time with a clinically relevant diagnostic ability. It may be well applicable to daily clinical practice to reduce the burden of endoscopists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半晴完成签到,获得积分20
7秒前
9秒前
11秒前
YUHANGJI发布了新的文献求助50
14秒前
15秒前
动听的涵山完成签到,获得积分10
24秒前
sxb10101应助知更鸟采纳,获得10
43秒前
1分钟前
1分钟前
1分钟前
tubby发布了新的文献求助10
1分钟前
隐形曼青应助研友_LNBgkL采纳,获得10
1分钟前
1分钟前
紫熊发布了新的文献求助20
1分钟前
科研通AI6应助tubby采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
研友_LNBgkL发布了新的文献求助10
2分钟前
lsl应助科研通管家采纳,获得30
2分钟前
2分钟前
2分钟前
2分钟前
Lavender发布了新的文献求助10
2分钟前
2分钟前
从容芮完成签到,获得积分0
2分钟前
紫熊发布了新的文献求助30
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Zoe完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI6应助Lavender采纳,获得10
4分钟前
lsl应助科研通管家采纳,获得100
4分钟前
斯文败类应助科研通管家采纳,获得10
4分钟前
4分钟前
孙雪君完成签到,获得积分10
4分钟前
4分钟前
hb完成签到,获得积分0
5分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644786
求助须知:如何正确求助?哪些是违规求助? 4765654
关于积分的说明 15025637
捐赠科研通 4803114
什么是DOI,文献DOI怎么找? 2568008
邀请新用户注册赠送积分活动 1525509
关于科研通互助平台的介绍 1485018