Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images

医学 卷积神经网络 癌症 人工智能 放射科 胃癌 外科肿瘤学 内窥镜检查 内科学 计算机科学
作者
Toshiaki Hirasawa,Kazuharu Aoyama,Tetsuya Tanimoto,Soichiro Ishihara,Satoki Shichijo,Tsuyoshi Ozawa,Tatsuya Ohnishi,Mitsuhiro Fujishiro,Keigo Matsuo,Junko Fujisaki,Tomohiro Tada
出处
期刊:Gastric Cancer [Springer Nature]
卷期号:21 (4): 653-660 被引量:623
标识
DOI:10.1007/s10120-018-0793-2
摘要

Image recognition using artificial intelligence with deep learning through convolutional neural networks (CNNs) has dramatically improved and been increasingly applied to medical fields for diagnostic imaging. We developed a CNN that can automatically detect gastric cancer in endoscopic images.A CNN-based diagnostic system was constructed based on Single Shot MultiBox Detector architecture and trained using 13,584 endoscopic images of gastric cancer. To evaluate the diagnostic accuracy, an independent test set of 2296 stomach images collected from 69 consecutive patients with 77 gastric cancer lesions was applied to the constructed CNN.The CNN required 47 s to analyze 2296 test images. The CNN correctly diagnosed 71 of 77 gastric cancer lesions with an overall sensitivity of 92.2%, and 161 non-cancerous lesions were detected as gastric cancer, resulting in a positive predictive value of 30.6%. Seventy of the 71 lesions (98.6%) with a diameter of 6 mm or more as well as all invasive cancers were correctly detected. All missed lesions were superficially depressed and differentiated-type intramucosal cancers that were difficult to distinguish from gastritis even for experienced endoscopists. Nearly half of the false-positive lesions were gastritis with changes in color tone or an irregular mucosal surface.The constructed CNN system for detecting gastric cancer could process numerous stored endoscopic images in a very short time with a clinically relevant diagnostic ability. It may be well applicable to daily clinical practice to reduce the burden of endoscopists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
wanci应助LLP采纳,获得10
2秒前
科研通AI2S应助优秀的以寒采纳,获得10
2秒前
2秒前
斯文败类应助快乐小海带采纳,获得10
3秒前
共享精神应助Nick爱学习采纳,获得10
3秒前
沉默水瑶发布了新的文献求助10
3秒前
3秒前
所所应助科科比采纳,获得10
5秒前
艾莎莎5114完成签到,获得积分10
5秒前
5秒前
yoga发布了新的文献求助10
5秒前
可爱的函函应助know采纳,获得10
6秒前
请勿继续完成签到,获得积分10
7秒前
8秒前
ad发布了新的文献求助10
8秒前
lykxc完成签到,获得积分10
8秒前
9秒前
10秒前
SciGPT应助朴实的南露采纳,获得10
11秒前
12秒前
秋秋儿发布了新的文献求助10
13秒前
cmiii完成签到,获得积分10
14秒前
rui驳回了丘比特应助
15秒前
15秒前
Arlene发布了新的文献求助10
15秒前
阿正嗖啪发布了新的文献求助10
16秒前
16秒前
小幸运完成签到,获得积分10
16秒前
Roinne发布了新的文献求助10
17秒前
17秒前
隐形曼青应助快乐小海带采纳,获得10
18秒前
陆离发布了新的文献求助20
18秒前
19秒前
19秒前
aaa发布了新的文献求助30
19秒前
20秒前
mzf发布了新的文献求助10
20秒前
安静无招发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5636998
求助须知:如何正确求助?哪些是违规求助? 4742430
关于积分的说明 14997256
捐赠科研通 4795195
什么是DOI,文献DOI怎么找? 2561870
邀请新用户注册赠送积分活动 1521362
关于科研通互助平台的介绍 1481478