清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images

医学 卷积神经网络 癌症 人工智能 放射科 胃癌 外科肿瘤学 内窥镜检查 内科学 计算机科学
作者
Toshiaki Hirasawa,Kazuharu Aoyama,Tetsuya Tanimoto,Soichiro Ishihara,Satoki Shichijo,Tsuyoshi Ozawa,Tatsuya Ohnishi,Mitsuhiro Fujishiro,Keigo Matsuo,Junko Fujisaki,Tomohiro Tada
出处
期刊:Gastric Cancer [Springer Nature]
卷期号:21 (4): 653-660 被引量:623
标识
DOI:10.1007/s10120-018-0793-2
摘要

Image recognition using artificial intelligence with deep learning through convolutional neural networks (CNNs) has dramatically improved and been increasingly applied to medical fields for diagnostic imaging. We developed a CNN that can automatically detect gastric cancer in endoscopic images.A CNN-based diagnostic system was constructed based on Single Shot MultiBox Detector architecture and trained using 13,584 endoscopic images of gastric cancer. To evaluate the diagnostic accuracy, an independent test set of 2296 stomach images collected from 69 consecutive patients with 77 gastric cancer lesions was applied to the constructed CNN.The CNN required 47 s to analyze 2296 test images. The CNN correctly diagnosed 71 of 77 gastric cancer lesions with an overall sensitivity of 92.2%, and 161 non-cancerous lesions were detected as gastric cancer, resulting in a positive predictive value of 30.6%. Seventy of the 71 lesions (98.6%) with a diameter of 6 mm or more as well as all invasive cancers were correctly detected. All missed lesions were superficially depressed and differentiated-type intramucosal cancers that were difficult to distinguish from gastritis even for experienced endoscopists. Nearly half of the false-positive lesions were gastritis with changes in color tone or an irregular mucosal surface.The constructed CNN system for detecting gastric cancer could process numerous stored endoscopic images in a very short time with a clinically relevant diagnostic ability. It may be well applicable to daily clinical practice to reduce the burden of endoscopists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Setlla完成签到 ,获得积分10
刚刚
DHW1703701完成签到,获得积分10
7秒前
chcmy完成签到 ,获得积分0
21秒前
佳言2009完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
32秒前
50秒前
57秒前
wuludie应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
脑洞疼应助科研通管家采纳,获得10
57秒前
我是老大应助科研通管家采纳,获得10
57秒前
wuludie应助科研通管家采纳,获得10
57秒前
wuludie应助科研通管家采纳,获得10
57秒前
热心芷雪完成签到,获得积分10
1分钟前
小马甲应助George采纳,获得10
1分钟前
科研通AI2S应助crazy采纳,获得10
1分钟前
awu完成签到 ,获得积分10
1分钟前
智者雨人完成签到 ,获得积分10
1分钟前
炳灿完成签到 ,获得积分10
1分钟前
2分钟前
KINGAZX完成签到 ,获得积分10
2分钟前
予秋完成签到,获得积分10
2分钟前
予秋发布了新的文献求助10
2分钟前
Jayzie完成签到 ,获得积分10
2分钟前
friend516完成签到 ,获得积分10
2分钟前
深情安青应助HXZR0924采纳,获得10
2分钟前
huiluowork完成签到 ,获得积分10
2分钟前
白斯特完成签到,获得积分10
2分钟前
yiyixt完成签到 ,获得积分10
2分钟前
widesky777完成签到 ,获得积分0
2分钟前
wuludie应助科研通管家采纳,获得10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
iamzhangly30hyit完成签到 ,获得积分10
2分钟前
文献搬运工完成签到 ,获得积分10
3分钟前
lpp完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
George发布了新的文献求助10
3分钟前
HXZR0924发布了新的文献求助10
3分钟前
wang5945完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664623
求助须知:如何正确求助?哪些是违规求助? 4866702
关于积分的说明 15108196
捐赠科研通 4823260
什么是DOI,文献DOI怎么找? 2582164
邀请新用户注册赠送积分活动 1536238
关于科研通互助平台的介绍 1494619