Significance Hematophagous female mosquitoes transmit devastating human diseases. Owing to their obligatory blood feeding, they require an extremely high level of lipid metabolism for reproduction. We found that microRNA-277 (miR-277) plays a critical role in lipid metabolism of Aedes aegypti mosquitoes. The genetic disruption of miR-277 using the CRISPR-Cas9 system showed impairment of both lipid storage and ovarian development. Insulin/FOXO signaling was up-regulated after miR-277 depletion. Comprehensive screening and functional identification revealed that insulin-like peptides ilp7 and ilp8 are direct targets of miR-277. CRISPR-Cas9 depletions identified differential actions of these ILPs in lipid accumulation and utilization. Thus, miR-277 serves as a monitor that controls ILP7 and ILP8 mRNA levels to maintain the lipid homeostasis required for reproduction.