计算机科学
噪音(视频)
人工智能
图像(数学)
先验概率
计算机视觉
简单(哲学)
降噪
信号(编程语言)
蒙特卡罗方法
合成数据
模式识别(心理学)
机器学习
数学
统计
贝叶斯概率
认识论
哲学
程序设计语言
作者
Jaakko Lehtinen,Jacob Munkberg,Jon Hasselgren,Samuli Laine,Tero Karras,Miika Aittala,Timo Aila
出处
期刊:Cornell University - arXiv
日期:2018-01-01
被引量:698
标识
DOI:10.48550/arxiv.1803.04189
摘要
We apply basic statistical reasoning to signal reconstruction by machine learning -- learning to map corrupted observations to clean signals -- with a simple and powerful conclusion: it is possible to learn to restore images by only looking at corrupted examples, at performance at and sometimes exceeding training using clean data, without explicit image priors or likelihood models of the corruption. In practice, we show that a single model learns photographic noise removal, denoising synthetic Monte Carlo images, and reconstruction of undersampled MRI scans -- all corrupted by different processes -- based on noisy data only.
科研通智能强力驱动
Strongly Powered by AbleSci AI