“X-Map 2.0” for Edema Signal Enhancement for Acute Ischemic Stroke Using Non–Contrast-Enhanced Dual-Energy Computed Tomography

医学 水肿 核医学 计算机断层摄影术 放射科 冲程(发动机) 迭代重建 对比度(视觉) 断层摄影术 人工智能 计算机科学 物理 内科学 热力学
作者
Katsuyuki Taguchi,Toshihide Itoh,Matthew K. Fuld,Éric Fournié,Okkyun Lee,Kyo Noguchi
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:53 (7): 432-439 被引量:21
标识
DOI:10.1097/rli.0000000000000461
摘要

Objectives A novel imaging technique (“X-map”) has been developed to identify acute ischemic lesions for stroke patients using non–contrast-enhanced dual-energy computed tomography (NE-DE-CT). Using the 3-material decomposition technique, the original X-map (“X-map 1.0”) eliminates fat and bone from the images, suppresses the gray matter (GM)-white matter (WM) tissue contrast, and makes signals of edema induced by severe ischemia easier to detect. The aim of this study was to address the following 2 problems with the X-map 1.0: (1) biases in CT numbers (or artifacts) near the skull of NE-DE-CT images and (2) large intrapatient and interpatient variations in X-map 1.0 values. Materials and Methods We improved both an iterative beam-hardening correction (iBHC) method and the X-map algorithm. The new iBHC (iBHC2) modeled x-ray physics more accurately. The new X-map (“X-map 2.0”) estimated regional GM values—thus, maximizing the ability to suppress the GM-WM contrast, make edema signals quantitative, and enhance the edema signals that denote an increased water density for each pixel. We performed a retrospective study of 11 patients (3 men, 8 women; mean age, 76.3 years; range, 68-90 years) who presented to the emergency department with symptoms of acute stroke. Images were reconstructed with the old iBHC (iBHC1) and the iBHC2, and biases in CT numbers near the skull were measured. Both X-map 2.0 maps and X-map 1.0 maps were computed from iBHC2 images, both with and without a material decomposition-based edema signal enhancement (ESE) process. X-map values were measured at 5 to 9 locations on GM without infarct per patient; the mean value was calculated for each patient (we call it the patient-mean X-map value) and subtracted from the measured X-map values to generate zero-mean X-map values. The standard deviation of the patient-mean X-map values over multiple patients denotes the interpatient variation; the standard deviation over multiple zero-mean X-map values denotes the intrapatient variation. The Levene F test was performed to assess the difference in the standard deviations with different algorithms. Using 5 patient data who had diffusion weighted imaging (DWI) within 2 hours of NE-DE-CT, mean values at and near ischemic lesions were measured at 7 to 14 locations per patient with X-map images, CT images (low kV and high kV), and DWI images. The Pearson correlation coefficient was calculated between a normalized increase in DWI signals and either X-map or CT. Results The bias in CT numbers was lower with iBHC2 than with iBHC1 in both high- and low-kV images (2.5 ± 2.0 HU [95% confidence interval (CI), 1.3–3.8 HU] for iBHC2 vs 6.9 ± 2.3 HU [95% CI, 5.4–8.3 HU] for iBHC1 with high-kV images, P < 0.01; 1.5 ± 3.6 HU [95% CI, −0.8 to 3.7 HU] vs 12.8 ± 3.3 HU [95% CI, 10.7–14.8 HU] with low-kV images, P < 0.01). The interpatient variation was smaller with X-map 2.0 than with X-map 1.0, both with and without ESE (4.3 [95% CI, 3.0–7.6] for X-map 2.0 vs 19.0 [95% CI, 13.3–22.4] for X-map 1.0, both with ESE, P < 0.01; 3.0 [95% CI, 2.1–5.3] vs 12.0 [95% CI, 8.4–21.0] without ESE, P < 0.01). The intrapatient variation was also smaller with X-map 2.0 than with X-map 1.0 (6.2 [95% CI, 5.3–7.3] vs 8.5 [95% CI, 7.3–10.1] with ESE, P = 0.0122; 4.1 [95% CI, 3.6–4.9] vs 6.3 [95% CI, 5.5–7.6] without ESE, P < 0.01). The best 3 correlation coefficients ( R ) with DWI signals were −0.733 (95% CI, −0.845 to −0.560, P < 0.001) for X-map 2.0 with ESE, −0.642 (95% CI, −0.787 to −0.429, P < 0.001) for high-kV CT, and −0.609 (95% CI, −0.766 to −0.384, P < 0.001) for X-map 1.0 with ESE. Conclusion Both of the 2 problems outlined in the objectives have been addressed by improving both iBHC and X-map algorithm. The iBHC2 improved the bias in CT numbers and the visibility of GM-WM contrast throughout the brain space. The combination of iBHC2 and X-map 2.0 with ESE decreased both intrapatient and interpatient variations of edema signals significantly and had a strong correlation with DWI signals in terms of the strength of edema signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助nickthename采纳,获得10
1秒前
1秒前
一枝杷枇发布了新的文献求助10
1秒前
王老师完成签到,获得积分10
1秒前
领导范儿应助学术浓痰采纳,获得10
1秒前
2秒前
whisper完成签到,获得积分10
2秒前
2秒前
3秒前
偏偏海发布了新的文献求助10
3秒前
3秒前
bai完成签到 ,获得积分10
3秒前
3秒前
蒋依伶发布了新的文献求助10
4秒前
4秒前
4秒前
777完成签到,获得积分20
5秒前
科研通AI2S应助研友_LOoomL采纳,获得10
6秒前
舒服的数据线完成签到,获得积分10
6秒前
zy123发布了新的文献求助10
6秒前
SciGPT应助皮蛋采纳,获得10
7秒前
111222发布了新的文献求助10
7秒前
buno应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
buno应助科研通管家采纳,获得10
8秒前
8秒前
tuanheqi应助科研通管家采纳,获得30
8秒前
何111完成签到,获得积分10
8秒前
平芜尽处完成签到,获得积分10
8秒前
8秒前
孔biubiu完成签到 ,获得积分10
8秒前
kksk发布了新的文献求助10
9秒前
nxm发布了新的文献求助10
10秒前
Hello应助闪闪的屁股采纳,获得10
10秒前
jiang发布了新的文献求助10
10秒前
知道发布了新的文献求助10
11秒前
疯狂的冷之完成签到,获得积分10
11秒前
11秒前
日天的马铃薯完成签到,获得积分10
11秒前
上官若男应助nimomo采纳,获得50
12秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218457
求助须知:如何正确求助?哪些是违规求助? 2867704
关于积分的说明 8157719
捐赠科研通 2534685
什么是DOI,文献DOI怎么找? 1367140
科研通“疑难数据库(出版商)”最低求助积分说明 644934
邀请新用户注册赠送积分活动 618123