Analysis of financial time series using multiscale entropy based on skewness and kurtosis

峰度 偏斜 系列(地层学) 时间序列 熵(时间箭头) 计量经济学 数学 统计 物理 地质学 量子力学 古生物学
作者
Meng Xu,Pengjian Shang
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:490: 1543-1550 被引量:17
标识
DOI:10.1016/j.physa.2017.08.136
摘要

There is a great interest in studying dynamic characteristics of the financial time series of the daily stock closing price in different regions. Multi-scale entropy (MSE) is effective, mainly in quantifying the complexity of time series on different time scales. This paper applies a new method for financial stability from the perspective of MSE based on skewness and kurtosis. To better understand the superior coarse-graining method for the different kinds of stock indexes, we take into account the developmental characteristics of the three continents of Asia, North America and European stock markets. We study the volatility of different financial time series in addition to analyze the similarities and differences of coarsening time series from the perspective of skewness and kurtosis. A kind of corresponding relationship between the entropy value of stock sequences and the degree of stability of financial markets, were observed. The three stocks which have particular characteristics in the eight piece of stock sequences were discussed, finding the fact that it matches the result of applying the MSE method to showing results on a graph. A comparative study is conducted to simulate over synthetic and real world data. Results show that the modified method is more effective to the change of dynamics and has more valuable information. The result is obtained at the same time, finding the results of skewness and kurtosis discrimination is obvious, but also more stable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮的豌豆完成签到,获得积分10
1秒前
科研通AI2S应助carbonhan采纳,获得10
1秒前
不要异地发布了新的文献求助10
1秒前
不安青牛应助apple9515采纳,获得10
2秒前
2秒前
bkagyin应助Foremelon采纳,获得10
3秒前
4秒前
4秒前
烟花应助受伤书文采纳,获得10
4秒前
5秒前
qing1245完成签到,获得积分10
5秒前
KX2024完成签到,获得积分10
5秒前
5秒前
hupp发布了新的文献求助10
5秒前
雨季发布了新的文献求助10
6秒前
6秒前
舒适的冰凡完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
Liu发布了新的文献求助10
7秒前
我是老大应助森林木采纳,获得10
7秒前
9秒前
冷静剑成完成签到,获得积分10
9秒前
调研昵称发布了新的文献求助10
10秒前
雪糕发布了新的文献求助10
10秒前
来日方长应助Soph采纳,获得10
10秒前
11秒前
saluo完成签到 ,获得积分10
11秒前
白衣卿相发布了新的文献求助10
11秒前
pp‘s完成签到 ,获得积分10
11秒前
gy完成签到 ,获得积分10
11秒前
天真小甜瓜完成签到,获得积分10
11秒前
董小李完成签到,获得积分10
12秒前
12秒前
12秒前
勤奋花瓣发布了新的文献求助10
12秒前
12秒前
yiling发布了新的文献求助10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155255
求助须知:如何正确求助?哪些是违规求助? 2806077
关于积分的说明 7867955
捐赠科研通 2464459
什么是DOI,文献DOI怎么找? 1311849
科研通“疑难数据库(出版商)”最低求助积分说明 629777
版权声明 601862