Spatial patterns of leaf δ13C and its relationship with plant functional groups and environmental factors in China

常绿 δ13C 每年落叶的 高度(三角形) 比叶面积 生物 空间分布 植物功能类型 植物 环境科学 生态学 大气科学 生态系统 光合作用 数学 稳定同位素比值 统计 量子力学 物理 地质学 几何学
作者
Mingxu Li,Changhui Peng,Meng Wang,Yanzheng Yang,Kerou Zhang,Peng Li,Yan Yang,Jian Ni,Qiuan Zhu
出处
期刊:Journal Of Geophysical Research: Biogeosciences [Wiley]
卷期号:122 (7): 1564-1575 被引量:23
标识
DOI:10.1002/2016jg003529
摘要

The leaf carbon isotope ratio (δ13C) is a useful parameter for predicting a plant's water use efficiency, as an indicator for plant classification, and even in the reconstruction of paleoclimatic environments. In this study, we investigated the spatial pattern of leaf δ13C values and its relationship with plant functional groups and environmental factors throughout China. The high leaf δ13C in the database appeared in central and western China, and the averaged leaf δ13C was −27.15‰, with a range from −21.05‰ to −31.5‰. The order of the averaged δ13C for plant life forms from most positive to most negative was subshrubs > herbs = shrubs > trees > subtrees. Leaf δ13C is also influenced by some environmental factors, such as mean annual precipitation, relative humidity, mean annual temperature, solar hours, and altitude, although the overall influences are still relatively weak, in particular the influence of MAT and altitude. And we further found that plant functional types are dominant factors that regulate the magnitude of leaf δ13C for an individual site, whereas environmental conditions are key to understanding spatial patterns of leaf δ13C when we consider China as a whole. Ultimately, we conducted a multiple regression model of leaf δ13C with environmental factors and mapped the spatial distribution of leaf δ13C in China by using this model. However, this partial least squares model overestimated leaf δ13C for most life forms, especially for deciduous trees, evergreen shrubs, and subtrees, and thus need more improvement in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
邬傥完成签到,获得积分10
2秒前
tomato应助执着采纳,获得20
3秒前
大方嵩发布了新的文献求助10
3秒前
梓ccc完成签到,获得积分10
3秒前
3秒前
求助发布了新的文献求助10
4秒前
风雨1210发布了新的文献求助10
4秒前
4秒前
5秒前
小梁要加油完成签到,获得积分20
5秒前
Alpha发布了新的文献求助10
6秒前
刘鹏宇发布了新的文献求助10
7秒前
zhangscience完成签到,获得积分10
7秒前
可爱的函函应助若狂采纳,获得10
8秒前
小蘑菇应助阿美采纳,获得30
8秒前
科研通AI2S应助机智小虾米采纳,获得10
9秒前
充电宝应助Xx.采纳,获得10
10秒前
zhangscience发布了新的文献求助10
11秒前
深情安青应助大方嵩采纳,获得10
12秒前
英俊的铭应助大方嵩采纳,获得10
12秒前
李还好完成签到,获得积分10
13秒前
满意的柏柳完成签到,获得积分10
14秒前
15秒前
16秒前
16秒前
buno应助88采纳,获得10
16秒前
17秒前
三千世界完成签到,获得积分10
17秒前
17秒前
愉快的访旋完成签到,获得积分10
18秒前
Alpha完成签到,获得积分10
19秒前
大大发布了新的文献求助30
19秒前
翠翠发布了新的文献求助10
20秒前
半山发布了新的文献求助10
21秒前
21秒前
天天快乐应助CO2采纳,获得10
21秒前
隐形曼青应助junzilan采纳,获得10
22秒前
Dksido发布了新的文献求助10
22秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808