清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Relation Extraction via Position-Enhanced Convolutional Neural Network

Softmax函数 计算机科学 关系抽取 卷积神经网络 判决 人工智能 嵌入 关系(数据库) 任务(项目管理) 职位(财务) 代表(政治) 信息抽取 人口 人工神经网络 自然语言 自然语言处理 机器学习 数据挖掘 人口学 管理 财务 社会学 政治 政治学 法学 经济
作者
Weiwei Shi,Sheng Gao
标识
DOI:10.1109/ie.2017.28
摘要

Recently, deep neural network based methods have been widely used in relation extraction, which is an important task for knowledge base population, question answering and other natural language applications, to learn proper features from entities pairs and other sentence parts to extract relations from text. As a kind of important information, the value of position is always been underestimated, which causes a low weight of position information in various models and finally hurts the performance of relation extraction task. To alleviate this issue, we propose a position-enhanced embedding model based on convolutional neural network. In this model, we split the sentence representation into three parts based on the entity pairs in the sentence, and use three independent convolutional networks to learn features. Furthermore, we concatenate the output from different branches and employ a softmax layer to compute the probability for each relation. Experimental results on wildly used datasets achieve considerable improvements on relation extraction as compared with baselines, which shows that our proposed model can make full use of position information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
18秒前
陳.发布了新的文献求助10
25秒前
28秒前
bji完成签到,获得积分10
36秒前
兰球的仙人掌完成签到 ,获得积分10
46秒前
53秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
BowieHuang应助科研通管家采纳,获得10
54秒前
af完成签到,获得积分10
1分钟前
1分钟前
勤劳的渊思完成签到 ,获得积分10
1分钟前
两个榴莲完成签到,获得积分0
1分钟前
大胆易巧完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
hu发布了新的文献求助10
2分钟前
3分钟前
香蕉觅云应助杨泽宇采纳,获得10
3分钟前
简单的莫言完成签到,获得积分10
4分钟前
文承杰完成签到 ,获得积分10
4分钟前
沿途有你完成签到 ,获得积分10
4分钟前
jarrykim完成签到,获得积分10
4分钟前
4分钟前
ajing发布了新的文献求助10
5分钟前
5分钟前
5分钟前
温暖的芷烟完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
笑点低的斑马完成签到,获得积分10
5分钟前
tt完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
块块发布了新的文献求助10
6分钟前
鸿俦鹤侣完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
李健的小迷弟应助威菡采纳,获得10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664524
求助须知:如何正确求助?哪些是违规求助? 4864111
关于积分的说明 15107906
捐赠科研通 4823161
什么是DOI,文献DOI怎么找? 2582004
邀请新用户注册赠送积分活动 1536099
关于科研通互助平台的介绍 1494513