已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Graph theoretical metrics and machine learning for diagnosis of Parkinson's disease using rs-fMRI

聚类系数 人工智能 模式识别(心理学) 中间性中心性 功率图分析 计算机科学 预处理器 支持向量机 图形 平均路径长度 图论 聚类分析 数学 统计 最短路径问题 中心性 理论计算机科学 组合数学
作者
Amirali Kazeminejad,Soroosh Golbabaei,Hamid Soltanian‐Zadeh
标识
DOI:10.1109/aisp.2017.8324124
摘要

In this study, we investigated the suitability of graph theoretical analysis for automatic diagnosis of Parkinson's disease. Resting state fMRI data from 18 healthy controls and 19 patients were used in the study. After data preprocessing and identifying 90 regions of interest using the AAL atlas, average time series of each region was obtained. Next, a brain network graph was constructed using the regions as nodes and the Pearson correlation between their average time series as edge weights. A percentage of edges with the highest magnitude were kept and the rest were omitted from the graph using a thresholding method ranging from 10% to 30% with 2% increments. Global graph theoretical metrics for integration (Characteristic path length and Efficiency), segregation (Clustering Coefficient and Transitivity) and small-worldness were extracted for each subject and their between group differences were subjected to statistical analysis. Local metrics, including integration, segregation, centrality (betweenness, z-score, and participation coefficient) and nodal degree, were also extracted for each subject and used as features to train a support vector machine classifier. We have shown a statistically significant increase in characteristic path length as well as a decrease in segregation metrics and efficiency in Parkinson's patients. A floating forward automatic feature selection method was used to select the 5 best features from all extracted metrics to classify patients. Our classifier was able to achieve a diagnosis accuracy of ~95% when subjected to a leave-one-out cross-validation test. These features belonged to cuneus (right hemisphere), precuneus (left), superior (right) and middle (both) frontal gyri which were all previously reported to undergo alterations in Parkinson's disease. This investigation confirmed that global brain network alterations are associated with Parkinson's patients' symptoms and showed the potency of using graph theoretical metrics and machine learning for diagnosing the disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18275412695发布了新的文献求助10
刚刚
Sunshine应助kun采纳,获得10
1秒前
一岁一礼完成签到 ,获得积分10
2秒前
小醒笑哈哈完成签到,获得积分10
3秒前
6秒前
8秒前
8秒前
完美世界应助小醒笑哈哈采纳,获得10
10秒前
14秒前
Sunshine给王嗨皮的求助进行了留言
14秒前
YBR发布了新的文献求助10
14秒前
Yyyang发布了新的文献求助10
15秒前
零零柒发布了新的文献求助20
19秒前
婷123完成签到 ,获得积分10
20秒前
20秒前
20秒前
21秒前
等等完成签到,获得积分10
23秒前
王彦霖完成签到 ,获得积分10
24秒前
26秒前
等等发布了新的文献求助10
26秒前
丘比特应助chen采纳,获得10
27秒前
28秒前
28秒前
繁星长明应助科研通管家采纳,获得10
29秒前
yyds应助科研通管家采纳,获得10
29秒前
yyds应助科研通管家采纳,获得10
29秒前
yyds应助科研通管家采纳,获得80
29秒前
大个应助科研通管家采纳,获得10
29秒前
29秒前
充电宝应助科研通管家采纳,获得50
29秒前
yyds应助科研通管家采纳,获得80
29秒前
Momomo应助科研通管家采纳,获得20
29秒前
31秒前
万能图书馆应助复杂梦安采纳,获得10
32秒前
小何发布了新的文献求助10
32秒前
可爱新波发布了新的文献求助10
35秒前
36秒前
38秒前
Yyyang完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731417
求助须知:如何正确求助?哪些是违规求助? 5330101
关于积分的说明 15320954
捐赠科研通 4877467
什么是DOI,文献DOI怎么找? 2620332
邀请新用户注册赠送积分活动 1569596
关于科研通互助平台的介绍 1526091