Graph theoretical metrics and machine learning for diagnosis of Parkinson's disease using rs-fMRI

聚类系数 人工智能 模式识别(心理学) 中间性中心性 功率图分析 计算机科学 预处理器 支持向量机 图形 平均路径长度 图论 聚类分析 数学 统计 最短路径问题 中心性 理论计算机科学 组合数学
作者
Amirali Kazeminejad,Soroosh Golbabaei,Hamid Soltanian‐Zadeh
标识
DOI:10.1109/aisp.2017.8324124
摘要

In this study, we investigated the suitability of graph theoretical analysis for automatic diagnosis of Parkinson's disease. Resting state fMRI data from 18 healthy controls and 19 patients were used in the study. After data preprocessing and identifying 90 regions of interest using the AAL atlas, average time series of each region was obtained. Next, a brain network graph was constructed using the regions as nodes and the Pearson correlation between their average time series as edge weights. A percentage of edges with the highest magnitude were kept and the rest were omitted from the graph using a thresholding method ranging from 10% to 30% with 2% increments. Global graph theoretical metrics for integration (Characteristic path length and Efficiency), segregation (Clustering Coefficient and Transitivity) and small-worldness were extracted for each subject and their between group differences were subjected to statistical analysis. Local metrics, including integration, segregation, centrality (betweenness, z-score, and participation coefficient) and nodal degree, were also extracted for each subject and used as features to train a support vector machine classifier. We have shown a statistically significant increase in characteristic path length as well as a decrease in segregation metrics and efficiency in Parkinson's patients. A floating forward automatic feature selection method was used to select the 5 best features from all extracted metrics to classify patients. Our classifier was able to achieve a diagnosis accuracy of ~95% when subjected to a leave-one-out cross-validation test. These features belonged to cuneus (right hemisphere), precuneus (left), superior (right) and middle (both) frontal gyri which were all previously reported to undergo alterations in Parkinson's disease. This investigation confirmed that global brain network alterations are associated with Parkinson's patients' symptoms and showed the potency of using graph theoretical metrics and machine learning for diagnosing the disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大熊发布了新的文献求助10
2秒前
洛神发布了新的文献求助10
2秒前
3秒前
YYBAS发布了新的文献求助10
3秒前
JamesPei应助xhh采纳,获得10
4秒前
dsi发布了新的文献求助10
5秒前
5秒前
buding发布了新的文献求助10
5秒前
5秒前
6秒前
zxer完成签到,获得积分20
6秒前
Jasper应助三分采纳,获得10
6秒前
fbl完成签到,获得积分10
8秒前
吱吱发布了新的文献求助30
8秒前
结实的胡萝卜完成签到,获得积分10
8秒前
8秒前
愿好完成签到,获得积分10
9秒前
xin发布了新的文献求助10
10秒前
zxer发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
癸卯戊庚发布了新的文献求助30
12秒前
14秒前
14秒前
cy发布了新的文献求助10
14秒前
小镇的废物完成签到,获得积分10
14秒前
16秒前
浮游应助Yyyang采纳,获得10
17秒前
gty完成签到,获得积分10
18秒前
19秒前
浅梦完成签到,获得积分10
20秒前
liujx发布了新的文献求助10
21秒前
建辰十五发布了新的文献求助10
23秒前
终梦应助积极紫翠采纳,获得20
24秒前
24秒前
24秒前
RAmos_1982完成签到,获得积分10
26秒前
科研通AI6应助爱打乒乓球采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400805
求助须知:如何正确求助?哪些是违规求助? 4519886
关于积分的说明 14077191
捐赠科研通 4432852
什么是DOI,文献DOI怎么找? 2433843
邀请新用户注册赠送积分活动 1426070
关于科研通互助平台的介绍 1404657