Graph theoretical metrics and machine learning for diagnosis of Parkinson's disease using rs-fMRI

聚类系数 人工智能 模式识别(心理学) 中间性中心性 功率图分析 计算机科学 预处理器 支持向量机 图形 平均路径长度 图论 聚类分析 数学 统计 最短路径问题 中心性 理论计算机科学 组合数学
作者
Amirali Kazeminejad,Soroosh Golbabaei,Hamid Soltanian‐Zadeh
标识
DOI:10.1109/aisp.2017.8324124
摘要

In this study, we investigated the suitability of graph theoretical analysis for automatic diagnosis of Parkinson's disease. Resting state fMRI data from 18 healthy controls and 19 patients were used in the study. After data preprocessing and identifying 90 regions of interest using the AAL atlas, average time series of each region was obtained. Next, a brain network graph was constructed using the regions as nodes and the Pearson correlation between their average time series as edge weights. A percentage of edges with the highest magnitude were kept and the rest were omitted from the graph using a thresholding method ranging from 10% to 30% with 2% increments. Global graph theoretical metrics for integration (Characteristic path length and Efficiency), segregation (Clustering Coefficient and Transitivity) and small-worldness were extracted for each subject and their between group differences were subjected to statistical analysis. Local metrics, including integration, segregation, centrality (betweenness, z-score, and participation coefficient) and nodal degree, were also extracted for each subject and used as features to train a support vector machine classifier. We have shown a statistically significant increase in characteristic path length as well as a decrease in segregation metrics and efficiency in Parkinson's patients. A floating forward automatic feature selection method was used to select the 5 best features from all extracted metrics to classify patients. Our classifier was able to achieve a diagnosis accuracy of ~95% when subjected to a leave-one-out cross-validation test. These features belonged to cuneus (right hemisphere), precuneus (left), superior (right) and middle (both) frontal gyri which were all previously reported to undergo alterations in Parkinson's disease. This investigation confirmed that global brain network alterations are associated with Parkinson's patients' symptoms and showed the potency of using graph theoretical metrics and machine learning for diagnosing the disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
7ohnny完成签到,获得积分10
1秒前
千早爱音发布了新的文献求助10
1秒前
1秒前
Lynth_雪鸮发布了新的文献求助10
2秒前
2秒前
polki完成签到 ,获得积分10
3秒前
3秒前
JKH完成签到,获得积分10
4秒前
4秒前
泡泡泡芙发布了新的文献求助10
5秒前
zxd发布了新的文献求助10
5秒前
5秒前
嘿嘿呼发布了新的文献求助10
5秒前
Wlt完成签到,获得积分10
6秒前
研友_VZG7GZ应助李昕123采纳,获得10
7秒前
7秒前
蒋卉梅发布了新的文献求助10
7秒前
领导范儿应助甜甜的枫采纳,获得10
8秒前
千早爱音完成签到,获得积分10
8秒前
酷波er应助chc采纳,获得10
9秒前
NexusExplorer应助发的不太好采纳,获得10
9秒前
orixero应助冷彬采纳,获得10
10秒前
10秒前
yu发布了新的文献求助10
10秒前
常芹发布了新的文献求助10
11秒前
天天快乐应助嘿嘿呼采纳,获得10
12秒前
万能图书馆应助钱钱采纳,获得10
13秒前
机智毛豆发布了新的文献求助10
14秒前
季裕完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
WW发布了新的文献求助10
15秒前
16秒前
zxd完成签到,获得积分10
16秒前
Lynth_雪鸮发布了新的文献求助10
16秒前
收费完成签到 ,获得积分10
17秒前
orixero应助qq采纳,获得10
18秒前
Curiousrss完成签到,获得积分10
18秒前
李爱国应助ChuangyangLi采纳,获得10
18秒前
18秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672