已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Graph theoretical metrics and machine learning for diagnosis of Parkinson's disease using rs-fMRI

聚类系数 人工智能 模式识别(心理学) 中间性中心性 功率图分析 计算机科学 预处理器 支持向量机 图形 平均路径长度 图论 聚类分析 数学 统计 最短路径问题 中心性 理论计算机科学 组合数学
作者
Amirali Kazeminejad,Soroosh Golbabaei,Hamid Soltanian‐Zadeh
标识
DOI:10.1109/aisp.2017.8324124
摘要

In this study, we investigated the suitability of graph theoretical analysis for automatic diagnosis of Parkinson's disease. Resting state fMRI data from 18 healthy controls and 19 patients were used in the study. After data preprocessing and identifying 90 regions of interest using the AAL atlas, average time series of each region was obtained. Next, a brain network graph was constructed using the regions as nodes and the Pearson correlation between their average time series as edge weights. A percentage of edges with the highest magnitude were kept and the rest were omitted from the graph using a thresholding method ranging from 10% to 30% with 2% increments. Global graph theoretical metrics for integration (Characteristic path length and Efficiency), segregation (Clustering Coefficient and Transitivity) and small-worldness were extracted for each subject and their between group differences were subjected to statistical analysis. Local metrics, including integration, segregation, centrality (betweenness, z-score, and participation coefficient) and nodal degree, were also extracted for each subject and used as features to train a support vector machine classifier. We have shown a statistically significant increase in characteristic path length as well as a decrease in segregation metrics and efficiency in Parkinson's patients. A floating forward automatic feature selection method was used to select the 5 best features from all extracted metrics to classify patients. Our classifier was able to achieve a diagnosis accuracy of ~95% when subjected to a leave-one-out cross-validation test. These features belonged to cuneus (right hemisphere), precuneus (left), superior (right) and middle (both) frontal gyri which were all previously reported to undergo alterations in Parkinson's disease. This investigation confirmed that global brain network alterations are associated with Parkinson's patients' symptoms and showed the potency of using graph theoretical metrics and machine learning for diagnosing the disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiuxiuzhang完成签到 ,获得积分10
1秒前
琪琪发布了新的文献求助10
1秒前
2秒前
所所应助Lis采纳,获得10
4秒前
成就凡双应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
成就凡双应助科研通管家采纳,获得10
4秒前
4秒前
ceciiahanhan完成签到,获得积分10
5秒前
鲤鱼松鼠发布了新的文献求助10
6秒前
酒渡完成签到,获得积分10
6秒前
研友_VZG7GZ应助缥缈的半芹采纳,获得10
7秒前
酷波er应助lmt采纳,获得10
11秒前
11秒前
慈祥的蛋挞完成签到 ,获得积分10
11秒前
雾海完成签到,获得积分10
14秒前
香蕉觅云应助鲤鱼松鼠采纳,获得10
14秒前
半夏黄良完成签到,获得积分10
15秒前
ComeOn发布了新的文献求助10
16秒前
嗯嗯嗯发布了新的文献求助10
16秒前
17秒前
XinEr完成签到 ,获得积分10
17秒前
繁星完成签到,获得积分10
18秒前
Yiyyan完成签到,获得积分10
19秒前
李发行完成签到,获得积分10
19秒前
慕青应助澄如采纳,获得10
20秒前
nc完成签到 ,获得积分10
20秒前
xxx完成签到 ,获得积分10
20秒前
Lis发布了新的文献求助10
21秒前
李喜喜完成签到,获得积分10
22秒前
走啊走应助yyj采纳,获得60
23秒前
傲骨完成签到 ,获得积分10
25秒前
英姑应助limingming采纳,获得10
25秒前
libe完成签到,获得积分10
26秒前
27秒前
研友_ZG4ml8完成签到 ,获得积分10
28秒前
Yinan完成签到,获得积分20
29秒前
轨迹应助Begonia采纳,获得30
30秒前
30秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705435
求助须知:如何正确求助?哪些是违规求助? 5164132
关于积分的说明 15245526
捐赠科研通 4859289
什么是DOI,文献DOI怎么找? 2607711
邀请新用户注册赠送积分活动 1558849
关于科研通互助平台的介绍 1516399