已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Graph theoretical metrics and machine learning for diagnosis of Parkinson's disease using rs-fMRI

聚类系数 人工智能 模式识别(心理学) 中间性中心性 功率图分析 计算机科学 预处理器 支持向量机 图形 平均路径长度 图论 聚类分析 数学 统计 最短路径问题 中心性 理论计算机科学 组合数学
作者
Amirali Kazeminejad,Soroosh Golbabaei,Hamid Soltanian‐Zadeh
标识
DOI:10.1109/aisp.2017.8324124
摘要

In this study, we investigated the suitability of graph theoretical analysis for automatic diagnosis of Parkinson's disease. Resting state fMRI data from 18 healthy controls and 19 patients were used in the study. After data preprocessing and identifying 90 regions of interest using the AAL atlas, average time series of each region was obtained. Next, a brain network graph was constructed using the regions as nodes and the Pearson correlation between their average time series as edge weights. A percentage of edges with the highest magnitude were kept and the rest were omitted from the graph using a thresholding method ranging from 10% to 30% with 2% increments. Global graph theoretical metrics for integration (Characteristic path length and Efficiency), segregation (Clustering Coefficient and Transitivity) and small-worldness were extracted for each subject and their between group differences were subjected to statistical analysis. Local metrics, including integration, segregation, centrality (betweenness, z-score, and participation coefficient) and nodal degree, were also extracted for each subject and used as features to train a support vector machine classifier. We have shown a statistically significant increase in characteristic path length as well as a decrease in segregation metrics and efficiency in Parkinson's patients. A floating forward automatic feature selection method was used to select the 5 best features from all extracted metrics to classify patients. Our classifier was able to achieve a diagnosis accuracy of ~95% when subjected to a leave-one-out cross-validation test. These features belonged to cuneus (right hemisphere), precuneus (left), superior (right) and middle (both) frontal gyri which were all previously reported to undergo alterations in Parkinson's disease. This investigation confirmed that global brain network alterations are associated with Parkinson's patients' symptoms and showed the potency of using graph theoretical metrics and machine learning for diagnosing the disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王饱饱完成签到 ,获得积分10
刚刚
刘mou完成签到,获得积分10
2秒前
3秒前
gura完成签到 ,获得积分10
5秒前
拼搏耷完成签到,获得积分10
5秒前
7秒前
8秒前
9秒前
马嘉祺超绝鸡肉线完成签到,获得积分10
10秒前
小明明发布了新的文献求助10
12秒前
14秒前
16秒前
玻璃球完成签到 ,获得积分10
17秒前
17秒前
ajinjin完成签到,获得积分10
21秒前
22秒前
暮潇牧笑发布了新的文献求助10
22秒前
米龙完成签到,获得积分10
23秒前
bkagyin应助wdd采纳,获得10
23秒前
科研通AI6应助小明明采纳,获得10
29秒前
雪白书南完成签到 ,获得积分10
29秒前
lyon完成签到,获得积分10
36秒前
37秒前
养花低手完成签到 ,获得积分10
37秒前
等待吐司给等待吐司的求助进行了留言
38秒前
诚心山芙发布了新的文献求助10
41秒前
leyellows完成签到 ,获得积分10
42秒前
riccixuu完成签到 ,获得积分10
42秒前
44秒前
55秒前
57秒前
57秒前
dwxj007发布了新的文献求助10
59秒前
ljl86400完成签到,获得积分10
59秒前
yukaka发布了新的文献求助10
1分钟前
羞涩的傲菡完成签到,获得积分10
1分钟前
1分钟前
小张完成签到 ,获得积分10
1分钟前
无花果应助yukaka采纳,获得10
1分钟前
krislan完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253316
求助须知:如何正确求助?哪些是违规求助? 4416731
关于积分的说明 13750447
捐赠科研通 4289094
什么是DOI,文献DOI怎么找? 2353235
邀请新用户注册赠送积分活动 1349978
关于科研通互助平台的介绍 1309772