Graph theoretical metrics and machine learning for diagnosis of Parkinson's disease using rs-fMRI

聚类系数 人工智能 模式识别(心理学) 中间性中心性 功率图分析 计算机科学 预处理器 支持向量机 图形 平均路径长度 图论 聚类分析 数学 统计 最短路径问题 中心性 理论计算机科学 组合数学
作者
Amirali Kazeminejad,Soroosh Golbabaei,Hamid Soltanian‐Zadeh
标识
DOI:10.1109/aisp.2017.8324124
摘要

In this study, we investigated the suitability of graph theoretical analysis for automatic diagnosis of Parkinson's disease. Resting state fMRI data from 18 healthy controls and 19 patients were used in the study. After data preprocessing and identifying 90 regions of interest using the AAL atlas, average time series of each region was obtained. Next, a brain network graph was constructed using the regions as nodes and the Pearson correlation between their average time series as edge weights. A percentage of edges with the highest magnitude were kept and the rest were omitted from the graph using a thresholding method ranging from 10% to 30% with 2% increments. Global graph theoretical metrics for integration (Characteristic path length and Efficiency), segregation (Clustering Coefficient and Transitivity) and small-worldness were extracted for each subject and their between group differences were subjected to statistical analysis. Local metrics, including integration, segregation, centrality (betweenness, z-score, and participation coefficient) and nodal degree, were also extracted for each subject and used as features to train a support vector machine classifier. We have shown a statistically significant increase in characteristic path length as well as a decrease in segregation metrics and efficiency in Parkinson's patients. A floating forward automatic feature selection method was used to select the 5 best features from all extracted metrics to classify patients. Our classifier was able to achieve a diagnosis accuracy of ~95% when subjected to a leave-one-out cross-validation test. These features belonged to cuneus (right hemisphere), precuneus (left), superior (right) and middle (both) frontal gyri which were all previously reported to undergo alterations in Parkinson's disease. This investigation confirmed that global brain network alterations are associated with Parkinson's patients' symptoms and showed the potency of using graph theoretical metrics and machine learning for diagnosing the disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zik应助yuan采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
李萌发布了新的文献求助10
2秒前
大龙哥886应助xzx采纳,获得10
3秒前
万能图书馆应助yangmiemie采纳,获得10
4秒前
科研通AI6应助稳重的又菱采纳,获得10
5秒前
LucyLi发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
lin完成签到,获得积分10
8秒前
yangmiemie完成签到,获得积分10
10秒前
桐桐应助麦辣基米堡采纳,获得10
11秒前
杨海菡发布了新的文献求助10
12秒前
12秒前
科研通AI6应助阔达雨灵采纳,获得10
13秒前
lt关闭了lt文献求助
13秒前
14秒前
bkagyin应助lin采纳,获得10
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
杨海菡完成签到,获得积分10
16秒前
wlf完成签到,获得积分10
18秒前
yangmiemie发布了新的文献求助10
19秒前
Breez2004发布了新的文献求助10
19秒前
yuan完成签到,获得积分10
19秒前
你好完成签到 ,获得积分10
20秒前
汉堡包应助xiangshuoqi采纳,获得10
20秒前
科目三应助张zhang采纳,获得10
23秒前
25秒前
26秒前
26秒前
27秒前
weixiao完成签到,获得积分20
28秒前
29秒前
29秒前
29秒前
30秒前
30秒前
31秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583159
求助须知:如何正确求助?哪些是违规求助? 4667130
关于积分的说明 14765305
捐赠科研通 4609254
什么是DOI,文献DOI怎么找? 2529077
邀请新用户注册赠送积分活动 1498340
关于科研通互助平台的介绍 1466992