Graph theoretical metrics and machine learning for diagnosis of Parkinson's disease using rs-fMRI

聚类系数 人工智能 模式识别(心理学) 中间性中心性 功率图分析 计算机科学 预处理器 支持向量机 图形 平均路径长度 图论 聚类分析 数学 统计 最短路径问题 中心性 理论计算机科学 组合数学
作者
Amirali Kazeminejad,Soroosh Golbabaei,Hamid Soltanian‐Zadeh
标识
DOI:10.1109/aisp.2017.8324124
摘要

In this study, we investigated the suitability of graph theoretical analysis for automatic diagnosis of Parkinson's disease. Resting state fMRI data from 18 healthy controls and 19 patients were used in the study. After data preprocessing and identifying 90 regions of interest using the AAL atlas, average time series of each region was obtained. Next, a brain network graph was constructed using the regions as nodes and the Pearson correlation between their average time series as edge weights. A percentage of edges with the highest magnitude were kept and the rest were omitted from the graph using a thresholding method ranging from 10% to 30% with 2% increments. Global graph theoretical metrics for integration (Characteristic path length and Efficiency), segregation (Clustering Coefficient and Transitivity) and small-worldness were extracted for each subject and their between group differences were subjected to statistical analysis. Local metrics, including integration, segregation, centrality (betweenness, z-score, and participation coefficient) and nodal degree, were also extracted for each subject and used as features to train a support vector machine classifier. We have shown a statistically significant increase in characteristic path length as well as a decrease in segregation metrics and efficiency in Parkinson's patients. A floating forward automatic feature selection method was used to select the 5 best features from all extracted metrics to classify patients. Our classifier was able to achieve a diagnosis accuracy of ~95% when subjected to a leave-one-out cross-validation test. These features belonged to cuneus (right hemisphere), precuneus (left), superior (right) and middle (both) frontal gyri which were all previously reported to undergo alterations in Parkinson's disease. This investigation confirmed that global brain network alterations are associated with Parkinson's patients' symptoms and showed the potency of using graph theoretical metrics and machine learning for diagnosing the disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
完美世界应助温茶采纳,获得30
3秒前
呆呆兽发布了新的文献求助10
3秒前
小白完成签到,获得积分20
4秒前
4秒前
6秒前
最佳完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
9秒前
冯昊完成签到,获得积分10
9秒前
9秒前
xx发布了新的文献求助10
10秒前
10秒前
jackxxx完成签到,获得积分10
10秒前
迅速平灵发布了新的文献求助10
10秒前
11秒前
bkagyin应助釉荼采纳,获得30
12秒前
12秒前
13秒前
刘子田发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
14秒前
hfhkjh发布了新的文献求助10
15秒前
海鹰发布了新的文献求助10
15秒前
搜集达人应助龙川武生采纳,获得10
15秒前
蜜汁章鱼丸完成签到 ,获得积分10
15秒前
15秒前
able发布了新的文献求助10
16秒前
lcc李川川完成签到,获得积分10
16秒前
16秒前
冯昊发布了新的文献求助10
17秒前
温茶发布了新的文献求助30
17秒前
酷波er应助裴涵强采纳,获得10
17秒前
聪明飞飞完成签到,获得积分10
18秒前
我是老大应助陈文力采纳,获得10
18秒前
wenyh完成签到,获得积分10
18秒前
小团团完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769694
求助须知:如何正确求助?哪些是违规求助? 5581034
关于积分的说明 15422447
捐赠科研通 4903349
什么是DOI,文献DOI怎么找? 2638182
邀请新用户注册赠送积分活动 1586070
关于科研通互助平台的介绍 1541180