Graph theoretical metrics and machine learning for diagnosis of Parkinson's disease using rs-fMRI

聚类系数 人工智能 模式识别(心理学) 中间性中心性 功率图分析 计算机科学 预处理器 支持向量机 图形 平均路径长度 图论 聚类分析 数学 统计 最短路径问题 中心性 理论计算机科学 组合数学
作者
Amirali Kazeminejad,Soroosh Golbabaei,Hamid Soltanian‐Zadeh
标识
DOI:10.1109/aisp.2017.8324124
摘要

In this study, we investigated the suitability of graph theoretical analysis for automatic diagnosis of Parkinson's disease. Resting state fMRI data from 18 healthy controls and 19 patients were used in the study. After data preprocessing and identifying 90 regions of interest using the AAL atlas, average time series of each region was obtained. Next, a brain network graph was constructed using the regions as nodes and the Pearson correlation between their average time series as edge weights. A percentage of edges with the highest magnitude were kept and the rest were omitted from the graph using a thresholding method ranging from 10% to 30% with 2% increments. Global graph theoretical metrics for integration (Characteristic path length and Efficiency), segregation (Clustering Coefficient and Transitivity) and small-worldness were extracted for each subject and their between group differences were subjected to statistical analysis. Local metrics, including integration, segregation, centrality (betweenness, z-score, and participation coefficient) and nodal degree, were also extracted for each subject and used as features to train a support vector machine classifier. We have shown a statistically significant increase in characteristic path length as well as a decrease in segregation metrics and efficiency in Parkinson's patients. A floating forward automatic feature selection method was used to select the 5 best features from all extracted metrics to classify patients. Our classifier was able to achieve a diagnosis accuracy of ~95% when subjected to a leave-one-out cross-validation test. These features belonged to cuneus (right hemisphere), precuneus (left), superior (right) and middle (both) frontal gyri which were all previously reported to undergo alterations in Parkinson's disease. This investigation confirmed that global brain network alterations are associated with Parkinson's patients' symptoms and showed the potency of using graph theoretical metrics and machine learning for diagnosing the disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致白晴发布了新的文献求助10
刚刚
小废物发布了新的文献求助10
1秒前
HEIKU应助月白采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
非蛋白呼吸商完成签到,获得积分10
4秒前
科研通AI2S应助八戒的梦想采纳,获得10
5秒前
大模型应助罗婕采纳,获得10
5秒前
令莞发布了新的文献求助10
7秒前
Sybel发布了新的文献求助10
7秒前
Orange应助不吃香菜采纳,获得10
7秒前
建成发布了新的文献求助10
8秒前
8秒前
廖翰彬完成签到,获得积分10
9秒前
勤劳元瑶发布了新的文献求助10
9秒前
9秒前
李天发布了新的文献求助10
9秒前
利好发布了新的文献求助10
10秒前
汉堡包应助庞伟泽采纳,获得10
11秒前
科研完成签到,获得积分10
11秒前
英姑应助廖翰彬采纳,获得10
11秒前
12秒前
小二郎应助SY采纳,获得10
12秒前
可爱的函函应助煜琪采纳,获得10
13秒前
爱76的5发布了新的文献求助20
13秒前
十九发布了新的文献求助10
13秒前
13秒前
14秒前
张萌完成签到 ,获得积分10
15秒前
15秒前
大模型应助080670采纳,获得10
16秒前
14122完成签到,获得积分10
16秒前
16秒前
科研通AI2S应助Anny采纳,获得10
16秒前
Lz完成签到,获得积分10
16秒前
向日葵完成签到,获得积分10
16秒前
afli完成签到 ,获得积分0
17秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228597
求助须知:如何正确求助?哪些是违规求助? 2876412
关于积分的说明 8194867
捐赠科研通 2543528
什么是DOI,文献DOI怎么找? 1373784
科研通“疑难数据库(出版商)”最低求助积分说明 646833
邀请新用户注册赠送积分活动 621413