Graph theoretical metrics and machine learning for diagnosis of Parkinson's disease using rs-fMRI

聚类系数 人工智能 模式识别(心理学) 中间性中心性 功率图分析 计算机科学 预处理器 支持向量机 图形 平均路径长度 图论 聚类分析 数学 统计 最短路径问题 中心性 理论计算机科学 组合数学
作者
Amirali Kazeminejad,Soroosh Golbabaei,Hamid Soltanian‐Zadeh
标识
DOI:10.1109/aisp.2017.8324124
摘要

In this study, we investigated the suitability of graph theoretical analysis for automatic diagnosis of Parkinson's disease. Resting state fMRI data from 18 healthy controls and 19 patients were used in the study. After data preprocessing and identifying 90 regions of interest using the AAL atlas, average time series of each region was obtained. Next, a brain network graph was constructed using the regions as nodes and the Pearson correlation between their average time series as edge weights. A percentage of edges with the highest magnitude were kept and the rest were omitted from the graph using a thresholding method ranging from 10% to 30% with 2% increments. Global graph theoretical metrics for integration (Characteristic path length and Efficiency), segregation (Clustering Coefficient and Transitivity) and small-worldness were extracted for each subject and their between group differences were subjected to statistical analysis. Local metrics, including integration, segregation, centrality (betweenness, z-score, and participation coefficient) and nodal degree, were also extracted for each subject and used as features to train a support vector machine classifier. We have shown a statistically significant increase in characteristic path length as well as a decrease in segregation metrics and efficiency in Parkinson's patients. A floating forward automatic feature selection method was used to select the 5 best features from all extracted metrics to classify patients. Our classifier was able to achieve a diagnosis accuracy of ~95% when subjected to a leave-one-out cross-validation test. These features belonged to cuneus (right hemisphere), precuneus (left), superior (right) and middle (both) frontal gyri which were all previously reported to undergo alterations in Parkinson's disease. This investigation confirmed that global brain network alterations are associated with Parkinson's patients' symptoms and showed the potency of using graph theoretical metrics and machine learning for diagnosing the disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小劳完成签到,获得积分10
2秒前
福娃完成签到,获得积分10
4秒前
olivia完成签到 ,获得积分10
6秒前
一万朵蝴蝶完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
orixero应助冷艳惜梦采纳,获得10
8秒前
爆米花应助yan采纳,获得10
9秒前
田様应助贤弟采纳,获得10
9秒前
10秒前
jiayouya发布了新的文献求助10
11秒前
眠羊发布了新的文献求助10
12秒前
怕孤单的忆灵关注了科研通微信公众号
12秒前
尹天扬完成签到,获得积分10
12秒前
C22完成签到,获得积分10
13秒前
FashionBoy应助zfihead采纳,获得10
13秒前
13秒前
JG完成签到,获得积分10
13秒前
16秒前
17秒前
王凯完成签到,获得积分10
18秒前
18秒前
huqing发布了新的文献求助60
19秒前
19秒前
ddboys1009发布了新的文献求助10
19秒前
20秒前
C22发布了新的文献求助10
21秒前
王凯发布了新的文献求助10
22秒前
冷艳惜梦发布了新的文献求助10
22秒前
cinnamonbrd发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
24秒前
25秒前
25秒前
量子星尘发布了新的文献求助10
27秒前
snow发布了新的文献求助30
27秒前
上官若男应助赶路人采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604157
求助须知:如何正确求助?哪些是违规求助? 4688985
关于积分的说明 14857229
捐赠科研通 4696839
什么是DOI,文献DOI怎么找? 2541204
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851