渗透
材料科学
结晶
纳米孔
膜
氧化物
电泳沉积
多孔性
纳米技术
化学工程
渗透
复合材料
冶金
生物化学
工程类
化学
涂层
作者
Guangwei He,Mostapha Dakhchoune,Jing Zhao,Shiqi Huang,Kumar Varoon Agrawal
标识
DOI:10.1002/adfm.201707427
摘要
Abstract Metal–organic framework (MOF) films have recently emerged as highly permselective membranes yielding orders of magnitude higher gas permeance than that from the conventional membranes. However, synthesis of highly intergrown, ultrathin MOF films on porous supports without complex support‐modification has proven to be a challenge. Moreover, there is an urgent need of a generic crystallization route capable of synthesizing a wide range of MOF structures in an intergrown, thin‐film morphology. Herein, a novel electrophoretic nuclei assembly for crystallization of highly intergrown thin‐films (ENACT) approach, that allows synthesis of ultrathin, defect‐free ZIF‐8 on a wide range of unmodified supports (porous polyacrylonitrile, anodized aluminum oxide, metal foil, porous carbon and graphene), is reported. As a result, a remarkably high H 2 permeance of 8.3 × 10 −6 mol m −2 s −1 Pa −1 and ideal gas selectivities of 7.3, 15.5, 16.2, and 2655 for H 2 /CO 2 , H 2 /N 2 , H 2 /CH 4 , and H 2 /C 3 H 8 , respectively, are achieved from an ultrathin (500 nm thick) ZIF‐8 membrane. A high C 3 H 6 permeance of 9.9 × 10 −8 mol m −2 s −1 Pa −1 and an attractive C 3 H 6 /C 3 H 8 selectivity of 31.6 are obtained. The ENACT approach is straightforward, reproducible and can be extended to a wide range of nanoporous crystals, and its application in the fabrication of intergrown ZIF‐7 films is demonstrated.
科研通智能强力驱动
Strongly Powered by AbleSci AI