Breast Cancer Molecular Subtype Prediction by Mammographic Radiomic Features

接收机工作特性 医学 三阴性乳腺癌 人工智能 乳腺癌 朴素贝叶斯分类器 特征选择 癌症 放射科 内科学 计算机科学 支持向量机
作者
Wenjuan Ma,Yumei Zhao,Yu Ji,Xinpeng Guo,Xiqi Jian,Peifang Liu,Shandong Wu
出处
期刊:Academic Radiology [Elsevier]
卷期号:26 (2): 196-201 被引量:111
标识
DOI:10.1016/j.acra.2018.01.023
摘要

Rationale and Objectives This study aimed to investigate whether quantitative radiomic features extracted from digital mammogram images are associated with molecular subtypes of breast cancer. Materials and Methods In this institutional review board–approved retrospective study, we collected 331 Chinese women who were diagnosed with invasive breast cancer in 2015. This cohort included 29 triple-negative, 45 human epidermal growth factor receptor 2 (HER2)-enriched, 36 luminal A, and 221 luminal B lesions. A set of 39 quantitative radiomic features, including morphologic, grayscale statistic, and texture features, were extracted from the segmented lesion area. Three binary classifications of the subtypes were performed: triple-negative vs non–triple-negative, HER2-enriched vs non–HER2-enriched, and luminal (A + B) vs nonluminal. The Naive Bayes machine learning scheme was employed for the classification, and the least absolute shrink age and selection operator method was used to select the most predictive features for the classifiers. Classification performance was evaluated by the area under receiver operating characteristic curve and accuracy. Results The model that used the combination of both the craniocaudal and the mediolateral oblique view images achieved the overall best performance than using either of the two views alone, yielding an area under receiver operating characteristic curve (or accuracy) of 0.865 (0.796) for triple-negative vs non–triple-negative, 0.784 (0.748) for HER2-enriched vs non–HER2-enriched, and 0.752 (0.788) for luminal vs nonluminal subtypes. Twelve most predictive features were selected by the least absolute shrink age and selection operator method and four of them (ie, roundness, concavity, gray mean, and correlation) showed a statistical significance (P  Conclusions Our study showed that quantitative radiomic imaging features of breast tumor extracted from digital mammograms are associated with breast cancer subtypes. Future larger studies are needed to further evaluate the findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzz完成签到,获得积分20
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
BAi发布了新的文献求助10
4秒前
科研通AI5应助沈嘀嘀采纳,获得150
5秒前
葡萄大仙完成签到,获得积分10
5秒前
5秒前
5秒前
兮兮兮兮兮兮完成签到,获得积分10
6秒前
newgeno2003发布了新的文献求助10
6秒前
充电宝应助沉默的婴采纳,获得10
6秒前
so应助今天开心吗采纳,获得10
7秒前
Johnpick应助憨憨芸采纳,获得10
7秒前
lxw发布了新的文献求助10
7秒前
恬淡虚无完成签到,获得积分10
7秒前
wzz发布了新的文献求助10
7秒前
Morch2021完成签到,获得积分10
7秒前
MRM发布了新的文献求助10
8秒前
8秒前
易水完成签到,获得积分10
8秒前
8秒前
卧室哒帅哥完成签到,获得积分10
8秒前
科研通AI5应助huanhuan采纳,获得10
8秒前
封闭货车完成签到,获得积分10
8秒前
雪雪子发布了新的文献求助10
8秒前
8秒前
9秒前
溜圈吃不胖完成签到,获得积分10
9秒前
9秒前
10秒前
36456657应助小趴蔡采纳,获得10
10秒前
喜悦傀斗发布了新的文献求助10
10秒前
11秒前
失似发布了新的文献求助10
11秒前
缥缈梦柏完成签到,获得积分20
12秒前
科研通AI5应助一念往生采纳,获得10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3547087
求助须知:如何正确求助?哪些是违规求助? 3124191
关于积分的说明 9358008
捐赠科研通 2822719
什么是DOI,文献DOI怎么找? 1551643
邀请新用户注册赠送积分活动 723580
科研通“疑难数据库(出版商)”最低求助积分说明 713825