Breast Cancer Molecular Subtype Prediction by Mammographic Radiomic Features

接收机工作特性 医学 三阴性乳腺癌 人工智能 乳腺癌 朴素贝叶斯分类器 特征选择 癌症 放射科 内科学 计算机科学 支持向量机
作者
Wenjuan Ma,Yumei Zhao,Yu Ji,Xinpeng Guo,Xiqi Jian,Peifang Liu,Shandong Wu
出处
期刊:Academic Radiology [Elsevier]
卷期号:26 (2): 196-201 被引量:111
标识
DOI:10.1016/j.acra.2018.01.023
摘要

Rationale and Objectives This study aimed to investigate whether quantitative radiomic features extracted from digital mammogram images are associated with molecular subtypes of breast cancer. Materials and Methods In this institutional review board–approved retrospective study, we collected 331 Chinese women who were diagnosed with invasive breast cancer in 2015. This cohort included 29 triple-negative, 45 human epidermal growth factor receptor 2 (HER2)-enriched, 36 luminal A, and 221 luminal B lesions. A set of 39 quantitative radiomic features, including morphologic, grayscale statistic, and texture features, were extracted from the segmented lesion area. Three binary classifications of the subtypes were performed: triple-negative vs non–triple-negative, HER2-enriched vs non–HER2-enriched, and luminal (A + B) vs nonluminal. The Naive Bayes machine learning scheme was employed for the classification, and the least absolute shrink age and selection operator method was used to select the most predictive features for the classifiers. Classification performance was evaluated by the area under receiver operating characteristic curve and accuracy. Results The model that used the combination of both the craniocaudal and the mediolateral oblique view images achieved the overall best performance than using either of the two views alone, yielding an area under receiver operating characteristic curve (or accuracy) of 0.865 (0.796) for triple-negative vs non–triple-negative, 0.784 (0.748) for HER2-enriched vs non–HER2-enriched, and 0.752 (0.788) for luminal vs nonluminal subtypes. Twelve most predictive features were selected by the least absolute shrink age and selection operator method and four of them (ie, roundness, concavity, gray mean, and correlation) showed a statistical significance (P  Conclusions Our study showed that quantitative radiomic imaging features of breast tumor extracted from digital mammograms are associated with breast cancer subtypes. Future larger studies are needed to further evaluate the findings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Nsy9802完成签到 ,获得积分10
3秒前
辛勤的泽洋完成签到 ,获得积分10
5秒前
木木完成签到,获得积分10
6秒前
深情安青应助beleve采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
Gina完成签到 ,获得积分10
18秒前
19秒前
duoduo完成签到 ,获得积分10
21秒前
ly普鲁卡因完成签到,获得积分10
22秒前
博姐37完成签到 ,获得积分10
22秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
beleve发布了新的文献求助10
23秒前
知性的夏之完成签到 ,获得积分10
24秒前
houbinghua完成签到,获得积分10
25秒前
成就的孤晴完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
ggp完成签到,获得积分0
27秒前
28秒前
橘生淮南完成签到,获得积分10
30秒前
beleve完成签到,获得积分10
31秒前
32秒前
wwwjy完成签到 ,获得积分10
35秒前
菜鸟学习完成签到 ,获得积分10
36秒前
41秒前
小果完成签到 ,获得积分10
43秒前
43秒前
量子星尘发布了新的文献求助10
44秒前
Shaohan完成签到,获得积分10
45秒前
量子星尘发布了新的文献求助10
45秒前
xiaofeiyan完成签到 ,获得积分10
46秒前
芳菲依旧完成签到,获得积分0
47秒前
47秒前
董耀文完成签到,获得积分10
48秒前
我亦化身东海去完成签到 ,获得积分10
50秒前
背后如之完成签到,获得积分10
50秒前
51秒前
51秒前
奥里给医学生完成签到,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671546
求助须知:如何正确求助?哪些是违规求助? 4919419
关于积分的说明 15134948
捐赠科研通 4830339
什么是DOI,文献DOI怎么找? 2587027
邀请新用户注册赠送积分活动 1540660
关于科研通互助平台的介绍 1498936