Breast Cancer Molecular Subtype Prediction by Mammographic Radiomic Features

接收机工作特性 医学 三阴性乳腺癌 人工智能 乳腺癌 朴素贝叶斯分类器 特征选择 癌症 放射科 内科学 计算机科学 支持向量机
作者
Wenjuan Ma,Yumei Zhao,Yu Ji,Xinpeng Guo,Xiqi Jian,Peifang Liu,Shandong Wu
出处
期刊:Academic Radiology [Elsevier]
卷期号:26 (2): 196-201 被引量:111
标识
DOI:10.1016/j.acra.2018.01.023
摘要

Rationale and Objectives This study aimed to investigate whether quantitative radiomic features extracted from digital mammogram images are associated with molecular subtypes of breast cancer. Materials and Methods In this institutional review board–approved retrospective study, we collected 331 Chinese women who were diagnosed with invasive breast cancer in 2015. This cohort included 29 triple-negative, 45 human epidermal growth factor receptor 2 (HER2)-enriched, 36 luminal A, and 221 luminal B lesions. A set of 39 quantitative radiomic features, including morphologic, grayscale statistic, and texture features, were extracted from the segmented lesion area. Three binary classifications of the subtypes were performed: triple-negative vs non–triple-negative, HER2-enriched vs non–HER2-enriched, and luminal (A + B) vs nonluminal. The Naive Bayes machine learning scheme was employed for the classification, and the least absolute shrink age and selection operator method was used to select the most predictive features for the classifiers. Classification performance was evaluated by the area under receiver operating characteristic curve and accuracy. Results The model that used the combination of both the craniocaudal and the mediolateral oblique view images achieved the overall best performance than using either of the two views alone, yielding an area under receiver operating characteristic curve (or accuracy) of 0.865 (0.796) for triple-negative vs non–triple-negative, 0.784 (0.748) for HER2-enriched vs non–HER2-enriched, and 0.752 (0.788) for luminal vs nonluminal subtypes. Twelve most predictive features were selected by the least absolute shrink age and selection operator method and four of them (ie, roundness, concavity, gray mean, and correlation) showed a statistical significance (P  Conclusions Our study showed that quantitative radiomic imaging features of breast tumor extracted from digital mammograms are associated with breast cancer subtypes. Future larger studies are needed to further evaluate the findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
coffee完成签到,获得积分10
1秒前
握瑾怀瑜完成签到 ,获得积分0
2秒前
健忘雁梅完成签到 ,获得积分10
3秒前
郭枫完成签到,获得积分10
4秒前
5秒前
xmz应助科研通管家采纳,获得10
5秒前
lili完成签到,获得积分10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
zcl应助科研通管家采纳,获得50
5秒前
DUDUDUDU应助科研通管家采纳,获得10
5秒前
zhonglv7应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
昏睡的蟠桃应助科研通管家采纳,获得150
5秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
文静应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
DUDUDUDU应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
zhonglv7应助科研通管家采纳,获得10
6秒前
深情安青应助Ancestor采纳,获得10
6秒前
xmz应助科研通管家采纳,获得10
6秒前
子车茗应助科研通管家采纳,获得20
6秒前
无心客应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
清风徐来发布了新的文献求助10
7秒前
马昌进完成签到,获得积分20
9秒前
xxm完成签到,获得积分10
10秒前
祖问筠完成签到,获得积分10
10秒前
三杠完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304604
求助须知:如何正确求助?哪些是违规求助? 4451030
关于积分的说明 13850475
捐赠科研通 4338204
什么是DOI,文献DOI怎么找? 2381824
邀请新用户注册赠送积分活动 1376904
关于科研通互助平台的介绍 1344261