Breast Cancer Molecular Subtype Prediction by Mammographic Radiomic Features

接收机工作特性 医学 三阴性乳腺癌 人工智能 乳腺癌 朴素贝叶斯分类器 特征选择 癌症 放射科 内科学 计算机科学 支持向量机
作者
Wenjuan Ma,Yumei Zhao,Yu Ji,Xinpeng Guo,Xiqi Jian,Peifang Liu,Shandong Wu
出处
期刊:Academic Radiology [Elsevier]
卷期号:26 (2): 196-201 被引量:111
标识
DOI:10.1016/j.acra.2018.01.023
摘要

Rationale and Objectives This study aimed to investigate whether quantitative radiomic features extracted from digital mammogram images are associated with molecular subtypes of breast cancer. Materials and Methods In this institutional review board–approved retrospective study, we collected 331 Chinese women who were diagnosed with invasive breast cancer in 2015. This cohort included 29 triple-negative, 45 human epidermal growth factor receptor 2 (HER2)-enriched, 36 luminal A, and 221 luminal B lesions. A set of 39 quantitative radiomic features, including morphologic, grayscale statistic, and texture features, were extracted from the segmented lesion area. Three binary classifications of the subtypes were performed: triple-negative vs non–triple-negative, HER2-enriched vs non–HER2-enriched, and luminal (A + B) vs nonluminal. The Naive Bayes machine learning scheme was employed for the classification, and the least absolute shrink age and selection operator method was used to select the most predictive features for the classifiers. Classification performance was evaluated by the area under receiver operating characteristic curve and accuracy. Results The model that used the combination of both the craniocaudal and the mediolateral oblique view images achieved the overall best performance than using either of the two views alone, yielding an area under receiver operating characteristic curve (or accuracy) of 0.865 (0.796) for triple-negative vs non–triple-negative, 0.784 (0.748) for HER2-enriched vs non–HER2-enriched, and 0.752 (0.788) for luminal vs nonluminal subtypes. Twelve most predictive features were selected by the least absolute shrink age and selection operator method and four of them (ie, roundness, concavity, gray mean, and correlation) showed a statistical significance (P  Conclusions Our study showed that quantitative radiomic imaging features of breast tumor extracted from digital mammograms are associated with breast cancer subtypes. Future larger studies are needed to further evaluate the findings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC完成签到 ,获得积分10
刚刚
swing完成签到,获得积分10
1秒前
2秒前
zz发布了新的文献求助10
2秒前
seasonweng完成签到,获得积分10
3秒前
小马甲应助HHHHTTTT采纳,获得10
3秒前
Nidhogg完成签到,获得积分10
3秒前
妮可罗宾完成签到 ,获得积分10
4秒前
4秒前
4秒前
四羟基合铝酸钾完成签到,获得积分10
6秒前
SciGPT应助HHHHTTTT采纳,获得10
6秒前
7秒前
永远永远完成签到,获得积分10
7秒前
天天快乐应助汎影采纳,获得10
8秒前
9秒前
等一个晴天完成签到,获得积分10
9秒前
汤襄完成签到,获得积分10
9秒前
10秒前
研友_IEEE快到碗里来完成签到,获得积分20
10秒前
悦耳的乐松完成签到,获得积分10
11秒前
11秒前
apex完成签到,获得积分10
12秒前
12秒前
小岛完成签到 ,获得积分10
12秒前
12秒前
13秒前
小妍子完成签到 ,获得积分10
13秒前
贪玩星发布了新的文献求助10
13秒前
13秒前
游悠悠完成签到,获得积分10
14秒前
科目三应助博ge采纳,获得10
14秒前
15秒前
15秒前
基础题应助山水之乐采纳,获得20
15秒前
稳重的茗完成签到,获得积分10
16秒前
16秒前
上官若男应助肉卷采纳,获得10
16秒前
shirley完成签到,获得积分10
17秒前
你好晚安完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773843
求助须知:如何正确求助?哪些是违规求助? 5614219
关于积分的说明 15433109
捐赠科研通 4906284
什么是DOI,文献DOI怎么找? 2640157
邀请新用户注册赠送积分活动 1587995
关于科研通互助平台的介绍 1543018