Breast Cancer Molecular Subtype Prediction by Mammographic Radiomic Features

接收机工作特性 医学 三阴性乳腺癌 人工智能 乳腺癌 朴素贝叶斯分类器 特征选择 癌症 放射科 内科学 计算机科学 支持向量机
作者
Wenjuan Ma,Yumei Zhao,Yu Ji,Xinpeng Guo,Xiqi Jian,Peifang Liu,Shandong Wu
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:26 (2): 196-201 被引量:111
标识
DOI:10.1016/j.acra.2018.01.023
摘要

Rationale and Objectives This study aimed to investigate whether quantitative radiomic features extracted from digital mammogram images are associated with molecular subtypes of breast cancer. Materials and Methods In this institutional review board–approved retrospective study, we collected 331 Chinese women who were diagnosed with invasive breast cancer in 2015. This cohort included 29 triple-negative, 45 human epidermal growth factor receptor 2 (HER2)-enriched, 36 luminal A, and 221 luminal B lesions. A set of 39 quantitative radiomic features, including morphologic, grayscale statistic, and texture features, were extracted from the segmented lesion area. Three binary classifications of the subtypes were performed: triple-negative vs non–triple-negative, HER2-enriched vs non–HER2-enriched, and luminal (A + B) vs nonluminal. The Naive Bayes machine learning scheme was employed for the classification, and the least absolute shrink age and selection operator method was used to select the most predictive features for the classifiers. Classification performance was evaluated by the area under receiver operating characteristic curve and accuracy. Results The model that used the combination of both the craniocaudal and the mediolateral oblique view images achieved the overall best performance than using either of the two views alone, yielding an area under receiver operating characteristic curve (or accuracy) of 0.865 (0.796) for triple-negative vs non–triple-negative, 0.784 (0.748) for HER2-enriched vs non–HER2-enriched, and 0.752 (0.788) for luminal vs nonluminal subtypes. Twelve most predictive features were selected by the least absolute shrink age and selection operator method and four of them (ie, roundness, concavity, gray mean, and correlation) showed a statistical significance (P  Conclusions Our study showed that quantitative radiomic imaging features of breast tumor extracted from digital mammograms are associated with breast cancer subtypes. Future larger studies are needed to further evaluate the findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
时尚丹寒完成签到 ,获得积分10
刚刚
2秒前
spring2025发布了新的文献求助10
3秒前
小米完成签到,获得积分10
3秒前
能干的人完成签到,获得积分10
4秒前
malo发布了新的文献求助10
5秒前
5秒前
7秒前
能干的人发布了新的文献求助10
7秒前
SciGPT应助YANer采纳,获得10
7秒前
微风低回发布了新的文献求助30
7秒前
斯文败类应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
Rondab应助科研通管家采纳,获得10
9秒前
Rondab应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
烟花应助科研通管家采纳,获得10
9秒前
别摆烂了发布了新的文献求助10
10秒前
GOAT发布了新的文献求助10
12秒前
晟sheng完成签到 ,获得积分10
12秒前
13秒前
15秒前
小蘑菇应助malo采纳,获得20
15秒前
别摆烂了发布了新的文献求助10
18秒前
充电宝应助fanglin123采纳,获得10
19秒前
叶绿体完成签到,获得积分10
20秒前
奥利安费发布了新的文献求助10
20秒前
英俊的铭应助GOAT采纳,获得10
20秒前
21秒前
科研通AI2S应助Skuld采纳,获得10
21秒前
望志青年应助震动的乐天采纳,获得10
22秒前
23秒前
自信凡波完成签到,获得积分20
23秒前
别摆烂了发布了新的文献求助10
24秒前
25秒前
26秒前
李健应助CONFIDENCE采纳,获得10
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998925
求助须知:如何正确求助?哪些是违规求助? 3538424
关于积分的说明 11274205
捐赠科研通 3277345
什么是DOI,文献DOI怎么找? 1807518
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075