Advances in experimental and mechanistic computational models to understand pulmonary exposure to inhaled drugs

生化工程 计算机科学 计算模型 风险分析(工程) 医学 药物开发 药品 药理学 模拟 工程类
作者
Per Bäckman,Sumit Arora,William Couet,Ben Forbes,Wilbur de Kruijf,Amrit Paudel
出处
期刊:European Journal of Pharmaceutical Sciences [Elsevier]
卷期号:113: 41-52 被引量:64
标识
DOI:10.1016/j.ejps.2017.10.030
摘要

Prediction of local exposure following inhalation of a locally acting pulmonary drug is central to the successful development of novel inhaled medicines, as well as generic equivalents. This work provides a comprehensive review of the state of the art with respect to multiscale computer models designed to provide a mechanistic prediction of local and systemic drug exposure following inhalation. The availability and quality of underpinning in vivo and in vitro data informing the computer based models is also considered. Mechanistic modelling of local exposure has the potential to speed up and improve the chances of successful inhaled API and product development. Although there are examples in the literature where this type of modelling has been used to understand and explain local and systemic exposure, there are two main barriers to more widespread use. There is a lack of generally recognised commercially available computational models that incorporate mechanistic modelling of regional lung particle deposition and drug disposition processes to simulate free tissue drug concentration. There is also a need for physiologically relevant, good quality experimental data to inform such modelling. For example, there are no standardized experimental methods to characterize the dissolution of solid drug in the lungs or measure airway permeability. Hence, the successful application of mechanistic computer models to understand local exposure after inhalation and support product development and regulatory applications hinges on: (i) establishing reliable, bio-relevant means to acquire experimental data, and (ii) developing proven mechanistic computer models that combine: a mechanistic model of aerosol deposition and post-deposition processes in physiologically-based pharmacokinetic models that predict free local tissue concentrations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WFLLL完成签到,获得积分10
刚刚
Jian完成签到,获得积分20
1秒前
万能图书馆应助訾化端采纳,获得10
1秒前
36038138完成签到 ,获得积分10
1秒前
ldkshifo完成签到,获得积分10
3秒前
dhn完成签到,获得积分10
3秒前
3秒前
win完成签到,获得积分10
4秒前
4秒前
能干的尔柳完成签到,获得积分10
4秒前
传统的盼曼完成签到,获得积分20
4秒前
LvCR完成签到 ,获得积分10
6秒前
清风明月完成签到 ,获得积分10
7秒前
7秒前
8秒前
风趣秋白完成签到,获得积分0
8秒前
打打应助甘宜采纳,获得10
9秒前
leeshho完成签到,获得积分10
10秒前
系小小鱼啊完成签到,获得积分10
10秒前
凌凌子完成签到 ,获得积分10
11秒前
Hello应助bwh采纳,获得10
14秒前
hbl完成签到,获得积分10
15秒前
愤怒的如天完成签到 ,获得积分10
18秒前
肯德鸭完成签到,获得积分10
19秒前
小瑞完成签到 ,获得积分10
19秒前
杂草的生活完成签到,获得积分10
22秒前
22秒前
23秒前
25秒前
自觉南风完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
LI完成签到 ,获得积分10
30秒前
莎普爱思完成签到 ,获得积分10
30秒前
醉熏的幻灵完成签到 ,获得积分10
31秒前
31秒前
qiuxiu完成签到,获得积分10
38秒前
hihi完成签到,获得积分10
39秒前
小泉完成签到,获得积分10
39秒前
jasonwee发布了新的文献求助10
41秒前
香蕉诗蕊给平常的小馒头的求助进行了留言
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539314
求助须知:如何正确求助?哪些是违规求助? 4626076
关于积分的说明 14597627
捐赠科研通 4566895
什么是DOI,文献DOI怎么找? 2503687
邀请新用户注册赠送积分活动 1481599
关于科研通互助平台的介绍 1453173