Advances in experimental and mechanistic computational models to understand pulmonary exposure to inhaled drugs

生化工程 计算机科学 计算模型 风险分析(工程) 医学 药物开发 药品 药理学 模拟 工程类
作者
Per Bäckman,Sumit Arora,William Couet,Ben Forbes,Wilbur de Kruijf,Amrit Paudel
出处
期刊:European Journal of Pharmaceutical Sciences [Elsevier BV]
卷期号:113: 41-52 被引量:64
标识
DOI:10.1016/j.ejps.2017.10.030
摘要

Prediction of local exposure following inhalation of a locally acting pulmonary drug is central to the successful development of novel inhaled medicines, as well as generic equivalents. This work provides a comprehensive review of the state of the art with respect to multiscale computer models designed to provide a mechanistic prediction of local and systemic drug exposure following inhalation. The availability and quality of underpinning in vivo and in vitro data informing the computer based models is also considered. Mechanistic modelling of local exposure has the potential to speed up and improve the chances of successful inhaled API and product development. Although there are examples in the literature where this type of modelling has been used to understand and explain local and systemic exposure, there are two main barriers to more widespread use. There is a lack of generally recognised commercially available computational models that incorporate mechanistic modelling of regional lung particle deposition and drug disposition processes to simulate free tissue drug concentration. There is also a need for physiologically relevant, good quality experimental data to inform such modelling. For example, there are no standardized experimental methods to characterize the dissolution of solid drug in the lungs or measure airway permeability. Hence, the successful application of mechanistic computer models to understand local exposure after inhalation and support product development and regulatory applications hinges on: (i) establishing reliable, bio-relevant means to acquire experimental data, and (ii) developing proven mechanistic computer models that combine: a mechanistic model of aerosol deposition and post-deposition processes in physiologically-based pharmacokinetic models that predict free local tissue concentrations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助烩面大师采纳,获得10
1秒前
涂江渝完成签到 ,获得积分10
2秒前
包容的琦发布了新的文献求助10
2秒前
HMG1COA发布了新的文献求助10
2秒前
桃子e完成签到 ,获得积分10
3秒前
3秒前
海纳百川发布了新的文献求助10
3秒前
lihua发布了新的文献求助20
4秒前
4秒前
若有人兮发布了新的文献求助10
4秒前
小超发布了新的文献求助10
5秒前
blueming发布了新的文献求助10
5秒前
刘莅完成签到,获得积分10
6秒前
6秒前
6秒前
啦啦啦完成签到,获得积分10
6秒前
奋斗的珍完成签到,获得积分10
7秒前
xiaomili发布了新的文献求助10
7秒前
李子完成签到,获得积分10
7秒前
7秒前
燕子发布了新的文献求助30
8秒前
兑润泽发布了新的文献求助10
8秒前
美好稚晴完成签到 ,获得积分10
9秒前
凉哦哦完成签到,获得积分10
9秒前
9秒前
年年关注了科研通微信公众号
9秒前
Lin关闭了Lin文献求助
10秒前
123444完成签到,获得积分20
10秒前
ying完成签到,获得积分10
10秒前
10秒前
10秒前
所所应助椿iii采纳,获得10
10秒前
淡然惜萱完成签到,获得积分10
10秒前
10秒前
甜甜的寻真完成签到,获得积分10
11秒前
怡然嚣发布了新的文献求助30
11秒前
ke完成签到,获得积分10
11秒前
123444发布了新的文献求助10
12秒前
march应助光亮的小兔子采纳,获得10
12秒前
xiaomili完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600