亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Advances in experimental and mechanistic computational models to understand pulmonary exposure to inhaled drugs

生化工程 计算机科学 计算模型 风险分析(工程) 医学 药物开发 药品 药理学 模拟 工程类
作者
Per Bäckman,Sumit Arora,William Couet,Ben Forbes,Wilbur de Kruijf,Amrit Paudel
出处
期刊:European Journal of Pharmaceutical Sciences [Elsevier BV]
卷期号:113: 41-52 被引量:64
标识
DOI:10.1016/j.ejps.2017.10.030
摘要

Prediction of local exposure following inhalation of a locally acting pulmonary drug is central to the successful development of novel inhaled medicines, as well as generic equivalents. This work provides a comprehensive review of the state of the art with respect to multiscale computer models designed to provide a mechanistic prediction of local and systemic drug exposure following inhalation. The availability and quality of underpinning in vivo and in vitro data informing the computer based models is also considered. Mechanistic modelling of local exposure has the potential to speed up and improve the chances of successful inhaled API and product development. Although there are examples in the literature where this type of modelling has been used to understand and explain local and systemic exposure, there are two main barriers to more widespread use. There is a lack of generally recognised commercially available computational models that incorporate mechanistic modelling of regional lung particle deposition and drug disposition processes to simulate free tissue drug concentration. There is also a need for physiologically relevant, good quality experimental data to inform such modelling. For example, there are no standardized experimental methods to characterize the dissolution of solid drug in the lungs or measure airway permeability. Hence, the successful application of mechanistic computer models to understand local exposure after inhalation and support product development and regulatory applications hinges on: (i) establishing reliable, bio-relevant means to acquire experimental data, and (ii) developing proven mechanistic computer models that combine: a mechanistic model of aerosol deposition and post-deposition processes in physiologically-based pharmacokinetic models that predict free local tissue concentrations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
19秒前
充电宝应助wanli采纳,获得10
31秒前
53秒前
桐桐应助jarrykim采纳,获得10
58秒前
1分钟前
1分钟前
1分钟前
John完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
jarrykim发布了新的文献求助10
2分钟前
大个应助啊呆哦采纳,获得10
2分钟前
2分钟前
啊呆哦完成签到,获得积分10
2分钟前
在水一方应助sidneyyang采纳,获得10
2分钟前
啊呆哦发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
吴南宛发布了新的文献求助10
4分钟前
sidneyyang完成签到,获得积分10
4分钟前
211JZH完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
直率的笑翠完成签到 ,获得积分10
5分钟前
sidneyyang发布了新的文献求助10
5分钟前
5分钟前
Ashao完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889441
求助须知:如何正确求助?哪些是违规求助? 4173461
关于积分的说明 12952082
捐赠科研通 3934886
什么是DOI,文献DOI怎么找? 2159100
邀请新用户注册赠送积分活动 1177437
关于科研通互助平台的介绍 1082254