Advances in experimental and mechanistic computational models to understand pulmonary exposure to inhaled drugs

生化工程 计算机科学 计算模型 风险分析(工程) 医学 药物开发 药品 药理学 模拟 工程类
作者
Per Bäckman,Sumit Arora,William Couet,Ben Forbes,Wilbur de Kruijf,Amrit Paudel
出处
期刊:European Journal of Pharmaceutical Sciences [Elsevier]
卷期号:113: 41-52 被引量:64
标识
DOI:10.1016/j.ejps.2017.10.030
摘要

Prediction of local exposure following inhalation of a locally acting pulmonary drug is central to the successful development of novel inhaled medicines, as well as generic equivalents. This work provides a comprehensive review of the state of the art with respect to multiscale computer models designed to provide a mechanistic prediction of local and systemic drug exposure following inhalation. The availability and quality of underpinning in vivo and in vitro data informing the computer based models is also considered. Mechanistic modelling of local exposure has the potential to speed up and improve the chances of successful inhaled API and product development. Although there are examples in the literature where this type of modelling has been used to understand and explain local and systemic exposure, there are two main barriers to more widespread use. There is a lack of generally recognised commercially available computational models that incorporate mechanistic modelling of regional lung particle deposition and drug disposition processes to simulate free tissue drug concentration. There is also a need for physiologically relevant, good quality experimental data to inform such modelling. For example, there are no standardized experimental methods to characterize the dissolution of solid drug in the lungs or measure airway permeability. Hence, the successful application of mechanistic computer models to understand local exposure after inhalation and support product development and regulatory applications hinges on: (i) establishing reliable, bio-relevant means to acquire experimental data, and (ii) developing proven mechanistic computer models that combine: a mechanistic model of aerosol deposition and post-deposition processes in physiologically-based pharmacokinetic models that predict free local tissue concentrations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
战场原荡漾完成签到,获得积分10
刚刚
邱卓发布了新的文献求助10
刚刚
凤梨爱好者完成签到,获得积分10
刚刚
Valley发布了新的文献求助10
刚刚
1秒前
斯文慕山完成签到,获得积分10
1秒前
林林完成签到,获得积分10
1秒前
华莱士小怪完成签到,获得积分10
2秒前
研友_LJGpan完成签到,获得积分10
2秒前
FashionBoy应助zhshengu采纳,获得20
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
华仔应助外向小猫咪采纳,获得10
3秒前
4秒前
up发布了新的文献求助30
4秒前
英姑应助Luhh采纳,获得10
4秒前
甜美三娘完成签到,获得积分10
5秒前
英姑应助byl采纳,获得10
5秒前
5秒前
Orange应助从容听南采纳,获得10
5秒前
6秒前
爆米花应助wang采纳,获得10
6秒前
6秒前
6秒前
6秒前
ding应助斯文慕山采纳,获得10
6秒前
针尖上的王子完成签到,获得积分10
6秒前
77发布了新的文献求助10
7秒前
Certainty橙子完成签到 ,获得积分10
7秒前
糖霜烤面包完成签到 ,获得积分10
7秒前
我是老大应助zhaosheng采纳,获得10
7秒前
生动的怜菡完成签到,获得积分10
8秒前
wuxiao完成签到,获得积分10
8秒前
Alberat完成签到,获得积分10
8秒前
细腻的惜梦完成签到,获得积分10
8秒前
8秒前
万能图书馆应助123采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997