Advances in experimental and mechanistic computational models to understand pulmonary exposure to inhaled drugs

生化工程 计算机科学 计算模型 风险分析(工程) 医学 药物开发 药品 药理学 模拟 工程类
作者
Per Bäckman,Sumit Arora,William Couet,Ben Forbes,Wilbur de Kruijf,Amrit Paudel
出处
期刊:European Journal of Pharmaceutical Sciences [Elsevier]
卷期号:113: 41-52 被引量:64
标识
DOI:10.1016/j.ejps.2017.10.030
摘要

Prediction of local exposure following inhalation of a locally acting pulmonary drug is central to the successful development of novel inhaled medicines, as well as generic equivalents. This work provides a comprehensive review of the state of the art with respect to multiscale computer models designed to provide a mechanistic prediction of local and systemic drug exposure following inhalation. The availability and quality of underpinning in vivo and in vitro data informing the computer based models is also considered. Mechanistic modelling of local exposure has the potential to speed up and improve the chances of successful inhaled API and product development. Although there are examples in the literature where this type of modelling has been used to understand and explain local and systemic exposure, there are two main barriers to more widespread use. There is a lack of generally recognised commercially available computational models that incorporate mechanistic modelling of regional lung particle deposition and drug disposition processes to simulate free tissue drug concentration. There is also a need for physiologically relevant, good quality experimental data to inform such modelling. For example, there are no standardized experimental methods to characterize the dissolution of solid drug in the lungs or measure airway permeability. Hence, the successful application of mechanistic computer models to understand local exposure after inhalation and support product development and regulatory applications hinges on: (i) establishing reliable, bio-relevant means to acquire experimental data, and (ii) developing proven mechanistic computer models that combine: a mechanistic model of aerosol deposition and post-deposition processes in physiologically-based pharmacokinetic models that predict free local tissue concentrations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SKY完成签到,获得积分10
刚刚
怕孤独的云朵完成签到,获得积分10
刚刚
1秒前
3秒前
斯文败类应助dogshit采纳,获得10
3秒前
3秒前
3秒前
4秒前
汉堡包应助粗暴的友绿采纳,获得30
4秒前
SamYang发布了新的文献求助10
4秒前
qin202569完成签到,获得积分10
5秒前
明月曾经川岸去完成签到,获得积分10
5秒前
yangkang完成签到,获得积分10
5秒前
右右完成签到,获得积分10
6秒前
xiaoyu完成签到,获得积分10
6秒前
ml完成签到,获得积分10
6秒前
YAXUESUN发布了新的文献求助10
7秒前
医学事业完成签到,获得积分10
7秒前
7秒前
无极微光应助啊啊啊采纳,获得20
7秒前
kristen完成签到,获得积分10
7秒前
今后应助xiaoding采纳,获得10
7秒前
鲜艳的嚓茶完成签到,获得积分10
7秒前
古月方源完成签到 ,获得积分10
8秒前
小黑Robot完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
Iloveyou完成签到,获得积分10
8秒前
共享精神应助WangYZ采纳,获得30
8秒前
shadow发布了新的文献求助10
9秒前
偶然的风41177完成签到,获得积分10
9秒前
高挑的金毛完成签到 ,获得积分10
9秒前
10秒前
闪闪幼南完成签到,获得积分10
10秒前
超然度陈完成签到,获得积分10
10秒前
实验鱼发布了新的文献求助10
11秒前
汉堡包应助wubin69采纳,获得10
11秒前
SamYang完成签到,获得积分10
12秒前
公龟完成签到,获得积分0
12秒前
DDZ完成签到,获得积分10
12秒前
Deer发布了新的文献求助30
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645554
求助须知:如何正确求助?哪些是违规求助? 4769221
关于积分的说明 15030506
捐赠科研通 4804229
什么是DOI,文献DOI怎么找? 2568855
邀请新用户注册赠送积分活动 1526056
关于科研通互助平台的介绍 1485654