Advances in experimental and mechanistic computational models to understand pulmonary exposure to inhaled drugs

生化工程 计算机科学 计算模型 风险分析(工程) 医学 药物开发 药品 药理学 模拟 工程类
作者
Per Bäckman,Sumit Arora,William Couet,Ben Forbes,Wilbur de Kruijf,Amrit Paudel
出处
期刊:European Journal of Pharmaceutical Sciences [Elsevier]
卷期号:113: 41-52 被引量:64
标识
DOI:10.1016/j.ejps.2017.10.030
摘要

Prediction of local exposure following inhalation of a locally acting pulmonary drug is central to the successful development of novel inhaled medicines, as well as generic equivalents. This work provides a comprehensive review of the state of the art with respect to multiscale computer models designed to provide a mechanistic prediction of local and systemic drug exposure following inhalation. The availability and quality of underpinning in vivo and in vitro data informing the computer based models is also considered. Mechanistic modelling of local exposure has the potential to speed up and improve the chances of successful inhaled API and product development. Although there are examples in the literature where this type of modelling has been used to understand and explain local and systemic exposure, there are two main barriers to more widespread use. There is a lack of generally recognised commercially available computational models that incorporate mechanistic modelling of regional lung particle deposition and drug disposition processes to simulate free tissue drug concentration. There is also a need for physiologically relevant, good quality experimental data to inform such modelling. For example, there are no standardized experimental methods to characterize the dissolution of solid drug in the lungs or measure airway permeability. Hence, the successful application of mechanistic computer models to understand local exposure after inhalation and support product development and regulatory applications hinges on: (i) establishing reliable, bio-relevant means to acquire experimental data, and (ii) developing proven mechanistic computer models that combine: a mechanistic model of aerosol deposition and post-deposition processes in physiologically-based pharmacokinetic models that predict free local tissue concentrations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
小小青完成签到,获得积分10
2秒前
2秒前
敏感的鸿煊完成签到,获得积分10
3秒前
前进的小宅熊完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
YangSY发布了新的文献求助10
4秒前
莲莲发布了新的文献求助10
5秒前
CodeCraft应助搞怪的元槐采纳,获得30
6秒前
背后中心发布了新的文献求助10
6秒前
6秒前
asri1234发布了新的文献求助30
7秒前
清水胖子发布了新的文献求助30
7秒前
Lucas应助clueless采纳,获得10
8秒前
香菜发布了新的文献求助10
8秒前
10秒前
然大宝完成签到,获得积分10
10秒前
sdsa完成签到,获得积分10
10秒前
drift完成签到,获得积分10
11秒前
所所应助正直从阳采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
清水胖子完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
脑洞疼应助Robin采纳,获得10
18秒前
18秒前
研友_VZG7GZ应助乐观的眼睛采纳,获得10
21秒前
czy发布了新的文献求助10
21秒前
22秒前
湖蓝色发布了新的文献求助10
22秒前
23秒前
23秒前
23秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770601
求助须知:如何正确求助?哪些是违规求助? 5586403
关于积分的说明 15424708
捐赠科研通 4904120
什么是DOI,文献DOI怎么找? 2638520
邀请新用户注册赠送积分活动 1586415
关于科研通互助平台的介绍 1541488