强化学习
计算机科学
人工智能
卷积神经网络
深度学习
功能(生物学)
贝尔曼方程
价值(数学)
建筑
增强学习
控制(管理)
像素
钢筋
机器学习
数学
工程类
数学优化
生物
进化生物学
艺术
视觉艺术
结构工程
作者
Volodymyr Mnih,Koray Kavukcuoglu,David Silver,Alex Graves,Ioannis Antonoglou,Daan Wierstra,Martin Riedmiller
出处
期刊:Cornell University - arXiv
日期:2013-12-19
被引量:2568
摘要
We present the first deep learning model to successfully learn control
policies directly from high-dimensional sensory input using reinforcement
learning. The model is a convolutional neural network, trained with a variant
of Q-learning, whose input is raw pixels and whose output is a value function
estimating future rewards. We apply our method to seven Atari 2600 games from
the Arcade Learning Environment, with no adjustment of the architecture or
learning algorithm. We find that it outperforms all previous approaches on six
of the games and surpasses a human expert on three of them.
科研通智能强力驱动
Strongly Powered by AbleSci AI