Fast and Accurate Entity Recognition with Iterated Dilated Convolutions

计算机科学 背景(考古学) 迭代函数 卷积神经网络 人工智能 利用 平行性(语法) 并行计算 数学 计算机安全 生物 数学分析 古生物学
作者
Emma Strubell,Patrick Verga,David Belanger,Andrew McCallum
标识
DOI:10.18653/v1/d17-1283
摘要

Today when many practitioners run basic NLP on the entire web and large-volume traffic, faster methods are paramount to saving time and energy costs. Recent advances in GPU hardware have led to the emergence of bi-directional LSTMs as a standard method for obtaining per-token vector representations serving as input to labeling tasks such as NER (often followed by prediction in a linear-chain CRF). Though expressive and accurate, these models fail to fully exploit GPU parallelism, limiting their computational efficiency. This paper proposes a faster alternative to Bi-LSTMs for NER: Iterated Dilated Convolutional Neural Networks (ID-CNNs), which have better capacity than traditional CNNs for large context and structured prediction. Unlike LSTMs whose sequential processing on sentences of length N requires O(N) time even in the face of parallelism, ID-CNNs permit fixed-depth convolutions to run in parallel across entire documents. We describe a distinct combination of network structure, parameter sharing and training procedures that enable dramatic 14-20x test-time speedups while retaining accuracy comparable to the Bi-LSTM-CRF. Moreover, ID-CNNs trained to aggregate context from the entire document are more accurate than Bi-LSTM-CRFs while attaining 8x faster test time speeds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
与山完成签到,获得积分20
2秒前
鸭蛋发布了新的文献求助10
2秒前
小肉丝发布了新的文献求助10
5秒前
Linyi完成签到,获得积分10
6秒前
与山发布了新的文献求助50
7秒前
10秒前
充电宝应助雨晴采纳,获得10
11秒前
fgd应助kkkkk采纳,获得10
12秒前
搞怪莫茗应助xiao_niu采纳,获得10
13秒前
15秒前
852应助Juliet采纳,获得10
15秒前
16秒前
云中漫步完成签到,获得积分10
18秒前
爱听歌初曼关注了科研通微信公众号
18秒前
隐形曼青应助shenghao采纳,获得10
20秒前
cyh发布了新的文献求助10
20秒前
蔡蔡完成签到,获得积分10
20秒前
铁蛋发布了新的文献求助10
23秒前
24秒前
25秒前
26秒前
毛123完成签到,获得积分10
28秒前
祭礼之龙发布了新的文献求助10
28秒前
29秒前
Dr_Zayn发布了新的文献求助20
29秒前
Liz完成签到 ,获得积分10
30秒前
31秒前
求助论文的人完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
31秒前
成就忻发布了新的文献求助10
31秒前
31秒前
32秒前
ff完成签到,获得积分10
32秒前
付艳完成签到,获得积分10
34秒前
硫化铅完成签到,获得积分10
35秒前
36秒前
36秒前
苹果果汁完成签到,获得积分10
36秒前
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956697
求助须知:如何正确求助?哪些是违规求助? 3502770
关于积分的说明 11110029
捐赠科研通 3233693
什么是DOI,文献DOI怎么找? 1787452
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152