Micro-UAV Detection and Classification from RF Fingerprints Using Machine Learning Techniques

计算机科学 能量(信号处理) 人工智能 弹道 信号(编程语言) 频域 模式识别(心理学) 隐马尔可夫模型 噪音(视频) 计算机视觉 数学 天文 统计 图像(数学) 物理 程序设计语言
作者
Martins Ezuma,Fatih Erden,Chethan Kumar Anjinappa,Özgür Özdemir,İsmail Güvenç
出处
期刊:IEEE Aerospace Conference 卷期号:: 1-13 被引量:163
标识
DOI:10.1109/aero.2019.8741970
摘要

This paper focuses on the detection and classification of micro-unmanned aerial vehicles (UAVs)using radio frequency (RF)fingerprints of the signals transmitted from the controller to the micro-UAV. In the detection phase, raw signals are split into frames and transformed into the wavelet domain to remove the bias in the signals and reduce the size of data to be processed. A naive Bayes approach, which is based on Markov models generated separately for UAV and non-UAV classes, is used to check for the presence of a UAV in each frame. In the classification phase, unlike the traditional approaches that rely solely on time-domain signals and corresponding features, the proposed technique uses the energy transient signal. This approach is more robust to noise and can cope with different modulation techniques. First, the normalized energy trajectory is generated from the energy-time-frequency distribution of the raw control signal. Next, the start and end points of the energy transient are detected by searching for the most abrupt changes in the mean of the energy trajectory. Then, a set of statistical features is extracted from the energy transient. Significant features are selected by performing neighborhood component analysis (NCA)to keep the computational cost of the algorithm low. Finally, selected features are fed to several machine learning algorithms for classification. The algorithms are evaluated experimentally using a database containing 100 RF signals from each of 14 different UAV controllers. The signals are recorded wirelessly using a high-frequency oscilloscope. The data set is randomly partitioned into training and test sets for validation with the ratio 4:1. Ten Monte Carlo simulations are run and results are averaged to assess the performance of the methods. All the micro-UAVs are detected correctly and an average accuracy of 96.3% is achieved using the k-nearest neighbor (kNN)classification. Proposed methods are also tested for different signal-to-noise ratio (SNR)levels and results are reported.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FREE完成签到,获得积分10
刚刚
积极的夏天完成签到 ,获得积分10
刚刚
yi一一发布了新的文献求助10
刚刚
科研通AI2S应助小张张采纳,获得10
刚刚
bkagyin应助monica01010采纳,获得10
1秒前
慕青应助雷寒云采纳,获得10
1秒前
Malmever发布了新的文献求助10
1秒前
2秒前
sss555完成签到,获得积分10
2秒前
Budada完成签到,获得积分20
5秒前
Tao完成签到 ,获得积分10
6秒前
8秒前
yi一一完成签到,获得积分10
8秒前
科研完成签到,获得积分10
8秒前
天青色等烟雨完成签到 ,获得积分10
9秒前
9秒前
州府十三完成签到,获得积分20
10秒前
不语花落关注了科研通微信公众号
12秒前
minino完成签到 ,获得积分10
12秒前
Akim应助icco采纳,获得10
13秒前
汤姆完成签到,获得积分10
14秒前
林菲菲完成签到,获得积分10
14秒前
苏南完成签到 ,获得积分10
15秒前
17秒前
昵称完成签到,获得积分10
18秒前
zhang完成签到,获得积分10
20秒前
21秒前
爆米花应助屁屁采纳,获得10
21秒前
22秒前
帅气的凌寒完成签到,获得积分10
25秒前
25秒前
会变成光的怪兽完成签到,获得积分20
26秒前
28秒前
犹豫梦旋发布了新的文献求助10
28秒前
桐桐应助不语花落采纳,获得10
29秒前
Dabaozi发布了新的文献求助10
30秒前
颜诺完成签到 ,获得积分10
30秒前
噼里啪啦发布了新的文献求助20
30秒前
31秒前
阳性苗驳回了852应助
31秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180770
求助须知:如何正确求助?哪些是违规求助? 2830975
关于积分的说明 7982319
捐赠科研通 2492731
什么是DOI,文献DOI怎么找? 1329813
科研通“疑难数据库(出版商)”最低求助积分说明 635802
版权声明 602954