Micro-UAV Detection and Classification from RF Fingerprints Using Machine Learning Techniques

计算机科学 能量(信号处理) 人工智能 弹道 信号(编程语言) 频域 模式识别(心理学) 隐马尔可夫模型 噪音(视频) 计算机视觉 数学 天文 统计 图像(数学) 物理 程序设计语言
作者
Martins Ezuma,Fatih Erden,Chethan Kumar Anjinappa,Özgür Özdemir,İsmail Güvenç
出处
期刊:IEEE Aerospace Conference 卷期号:: 1-13 被引量:163
标识
DOI:10.1109/aero.2019.8741970
摘要

This paper focuses on the detection and classification of micro-unmanned aerial vehicles (UAVs)using radio frequency (RF)fingerprints of the signals transmitted from the controller to the micro-UAV. In the detection phase, raw signals are split into frames and transformed into the wavelet domain to remove the bias in the signals and reduce the size of data to be processed. A naive Bayes approach, which is based on Markov models generated separately for UAV and non-UAV classes, is used to check for the presence of a UAV in each frame. In the classification phase, unlike the traditional approaches that rely solely on time-domain signals and corresponding features, the proposed technique uses the energy transient signal. This approach is more robust to noise and can cope with different modulation techniques. First, the normalized energy trajectory is generated from the energy-time-frequency distribution of the raw control signal. Next, the start and end points of the energy transient are detected by searching for the most abrupt changes in the mean of the energy trajectory. Then, a set of statistical features is extracted from the energy transient. Significant features are selected by performing neighborhood component analysis (NCA)to keep the computational cost of the algorithm low. Finally, selected features are fed to several machine learning algorithms for classification. The algorithms are evaluated experimentally using a database containing 100 RF signals from each of 14 different UAV controllers. The signals are recorded wirelessly using a high-frequency oscilloscope. The data set is randomly partitioned into training and test sets for validation with the ratio 4:1. Ten Monte Carlo simulations are run and results are averaged to assess the performance of the methods. All the micro-UAVs are detected correctly and an average accuracy of 96.3% is achieved using the k-nearest neighbor (kNN)classification. Proposed methods are also tested for different signal-to-noise ratio (SNR)levels and results are reported.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wukang发布了新的文献求助10
1秒前
虚心谷梦发布了新的文献求助10
1秒前
JamesPei应助CartGo采纳,获得10
1秒前
进步发布了新的文献求助10
3秒前
CodeCraft应助guaguadong采纳,获得10
4秒前
5秒前
qyn1234566完成签到,获得积分10
6秒前
思源应助InaZheng采纳,获得30
9秒前
不钓鱼发布了新的文献求助10
10秒前
大模型应助精明的沅采纳,获得10
10秒前
11秒前
今后应助纳米酶催化采纳,获得10
13秒前
13秒前
13秒前
14秒前
15秒前
15秒前
AAA1798发布了新的文献求助10
16秒前
16秒前
wanci应助难过千易采纳,获得10
17秒前
刘光正完成签到,获得积分10
18秒前
善学以致用应助gxmu6322采纳,获得10
19秒前
漫步云端发布了新的文献求助10
19秒前
CartGo发布了新的文献求助10
20秒前
Ava应助AJJACKY采纳,获得10
20秒前
老迟到的沛萍关注了科研通微信公众号
21秒前
21秒前
无色热带鱼完成签到,获得积分10
23秒前
打打应助可乐不可口采纳,获得10
23秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
端庄的正豪完成签到,获得积分20
24秒前
田様应助Tsui采纳,获得10
25秒前
王杰完成签到,获得积分20
26秒前
26秒前
27秒前
28秒前
28秒前
29秒前
英吉利25发布了新的文献求助10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975378
求助须知:如何正确求助?哪些是违规求助? 3519775
关于积分的说明 11199621
捐赠科研通 3256067
什么是DOI,文献DOI怎么找? 1798124
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305