Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization

隐藏字幕 计算机科学 判别式 卷积神经网络 人工智能 可视化 一般化 班级(哲学) 答疑 背景(考古学) 上下文图像分类 任务(项目管理) 机器学习 模式识别(心理学) 图像(数学) 古生物学 数学分析 经济 管理 生物 数学
作者
Ramprasaath R. Selvaraju,Michael Cogswell,Abhishek Das,Ramakrishna Vedantam,Devi Parikh,Dhruv Batra
出处
期刊:International Conference on Computer Vision 卷期号:: 618-626 被引量:18673
标识
DOI:10.1109/iccv.2017.74
摘要

We propose a technique for producing `visual explanations' for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent. Our approach - Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say logits for `dog' or even a caption), flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept. Unlike previous approaches, Grad- CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers (e.g. VGG), (2) CNNs used for structured outputs (e.g. captioning), (3) CNNs used in tasks with multi-modal inputs (e.g. visual question answering) or reinforcement learning, without architectural changes or re-training. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and apply it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into failure modes of these models (showing that seemingly unreasonable predictions have reasonable explanations), (b) outperform previous methods on the ILSVRC-15 weakly-supervised localization task, (c) are more faithful to the underlying model, and (d) help achieve model generalization by identifying dataset bias. For image captioning and VQA, our visualizations show even non-attention based models can localize inputs. Finally, we design and conduct human studies to measure if Grad-CAM explanations help users establish appropriate trust in predictions from deep networks and show that Grad-CAM helps untrained users successfully discern a `stronger' deep network from a `weaker' one even when both make identical predictions. Our code is available at https: //github.com/ramprs/grad-cam/ along with a demo on CloudCV [2] and video at youtu.be/COjUB9Izk6E.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaobai发布了新的文献求助10
1秒前
缥缈不惜完成签到,获得积分10
1秒前
1秒前
pgojpogk发布了新的文献求助30
1秒前
所所应助小磊采纳,获得10
1秒前
2秒前
SGY完成签到,获得积分20
2秒前
高尚发布了新的文献求助10
2秒前
研究僧完成签到,获得积分10
3秒前
慕青应助无辜丹翠采纳,获得10
4秒前
4秒前
落英芬芳发布了新的文献求助10
4秒前
大个应助aken采纳,获得10
4秒前
徐嗣桐完成签到,获得积分10
4秒前
贪玩飞珍发布了新的文献求助10
4秒前
5秒前
5秒前
1111发布了新的文献求助10
5秒前
李嘉图发布了新的文献求助10
5秒前
李ny发布了新的文献求助30
5秒前
SS2D发布了新的文献求助10
5秒前
赘婿应助翁遥采纳,获得20
6秒前
MYhang完成签到,获得积分10
6秒前
于金正发布了新的文献求助10
6秒前
6秒前
李健应助Rjy采纳,获得10
7秒前
7秒前
7秒前
小二郎应助LQ采纳,获得30
8秒前
JerryZ发布了新的文献求助30
8秒前
紧张的寄凡完成签到,获得积分10
8秒前
9秒前
小猪完成签到,获得积分10
9秒前
HHHONG发布了新的文献求助30
9秒前
Myx完成签到,获得积分10
9秒前
zhaoshanmei完成签到,获得积分10
9秒前
mx发布了新的文献求助10
10秒前
202211010668发布了新的文献求助10
10秒前
忧郁的白风完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505994
求助须知:如何正确求助?哪些是违规求助? 4601482
关于积分的说明 14476730
捐赠科研通 4535445
什么是DOI,文献DOI怎么找? 2485408
邀请新用户注册赠送积分活动 1468357
关于科研通互助平台的介绍 1440869