Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization

隐藏字幕 计算机科学 判别式 卷积神经网络 人工智能 可视化 一般化 班级(哲学) 答疑 背景(考古学) 上下文图像分类 任务(项目管理) 机器学习 模式识别(心理学) 图像(数学) 古生物学 数学分析 经济 管理 生物 数学
作者
Ramprasaath R. Selvaraju,Michael Cogswell,Abhishek Das,Ramakrishna Vedantam,Devi Parikh,Dhruv Batra
出处
期刊:International Conference on Computer Vision 卷期号:: 618-626 被引量:13882
标识
DOI:10.1109/iccv.2017.74
摘要

We propose a technique for producing `visual explanations' for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent. Our approach - Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say logits for `dog' or even a caption), flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept. Unlike previous approaches, Grad- CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers (e.g. VGG), (2) CNNs used for structured outputs (e.g. captioning), (3) CNNs used in tasks with multi-modal inputs (e.g. visual question answering) or reinforcement learning, without architectural changes or re-training. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and apply it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into failure modes of these models (showing that seemingly unreasonable predictions have reasonable explanations), (b) outperform previous methods on the ILSVRC-15 weakly-supervised localization task, (c) are more faithful to the underlying model, and (d) help achieve model generalization by identifying dataset bias. For image captioning and VQA, our visualizations show even non-attention based models can localize inputs. Finally, we design and conduct human studies to measure if Grad-CAM explanations help users establish appropriate trust in predictions from deep networks and show that Grad-CAM helps untrained users successfully discern a `stronger' deep network from a `weaker' one even when both make identical predictions. Our code is available at https: //github.com/ramprs/grad-cam/ along with a demo on CloudCV [2] and video at youtu.be/COjUB9Izk6E.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助专注凌文采纳,获得10
1秒前
1秒前
汉堡包应助杨e采纳,获得10
1秒前
斯文败类应助yy采纳,获得10
1秒前
1秒前
yaya发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
完美世界应助勤恳易谙采纳,获得10
3秒前
Random_8758完成签到,获得积分10
3秒前
th001201发布了新的文献求助10
4秒前
瑶瑶爱七七完成签到,获得积分10
4秒前
ghost完成签到 ,获得积分10
4秒前
4秒前
左旋溜达鸡完成签到,获得积分10
5秒前
紧要发布了新的文献求助20
5秒前
lian完成签到,获得积分10
5秒前
草莓茶泡饭完成签到,获得积分10
5秒前
dfggb完成签到,获得积分10
6秒前
6秒前
lijian完成签到,获得积分10
6秒前
7秒前
浮嘟嘟完成签到,获得积分10
7秒前
keyanrubbish完成签到,获得积分10
7秒前
郑盼秋完成签到,获得积分10
7秒前
snutcc发布了新的文献求助10
7秒前
7秒前
8秒前
smile~发布了新的文献求助10
8秒前
太叔捕完成签到,获得积分10
9秒前
初衷未央完成签到,获得积分10
10秒前
sss完成签到,获得积分10
10秒前
徒弟的师傅完成签到,获得积分10
10秒前
茹果发布了新的文献求助10
10秒前
SciGPT应助wangq采纳,获得10
11秒前
12秒前
汤mou完成签到,获得积分10
12秒前
13秒前
哈哈哈发布了新的文献求助10
13秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3226832
求助须知:如何正确求助?哪些是违规求助? 2875060
关于积分的说明 8189063
捐赠科研通 2542120
什么是DOI,文献DOI怎么找? 1372548
科研通“疑难数据库(出版商)”最低求助积分说明 646537
邀请新用户注册赠送积分活动 620887