Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization

隐藏字幕 计算机科学 判别式 卷积神经网络 人工智能 可视化 一般化 班级(哲学) 答疑 背景(考古学) 上下文图像分类 任务(项目管理) 机器学习 模式识别(心理学) 图像(数学) 古生物学 数学分析 经济 管理 生物 数学
作者
Ramprasaath R. Selvaraju,Michael Cogswell,Abhishek Das,Ramakrishna Vedantam,Devi Parikh,Dhruv Batra
出处
期刊:International Conference on Computer Vision 卷期号:: 618-626 被引量:18673
标识
DOI:10.1109/iccv.2017.74
摘要

We propose a technique for producing `visual explanations' for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent. Our approach - Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say logits for `dog' or even a caption), flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept. Unlike previous approaches, Grad- CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers (e.g. VGG), (2) CNNs used for structured outputs (e.g. captioning), (3) CNNs used in tasks with multi-modal inputs (e.g. visual question answering) or reinforcement learning, without architectural changes or re-training. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and apply it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into failure modes of these models (showing that seemingly unreasonable predictions have reasonable explanations), (b) outperform previous methods on the ILSVRC-15 weakly-supervised localization task, (c) are more faithful to the underlying model, and (d) help achieve model generalization by identifying dataset bias. For image captioning and VQA, our visualizations show even non-attention based models can localize inputs. Finally, we design and conduct human studies to measure if Grad-CAM explanations help users establish appropriate trust in predictions from deep networks and show that Grad-CAM helps untrained users successfully discern a `stronger' deep network from a `weaker' one even when both make identical predictions. Our code is available at https: //github.com/ramprs/grad-cam/ along with a demo on CloudCV [2] and video at youtu.be/COjUB9Izk6E.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
olia发布了新的文献求助10
刚刚
Candice应助孤独树叶采纳,获得10
1秒前
YUJIALING完成签到 ,获得积分10
1秒前
酷波er应助tdtk采纳,获得10
1秒前
冰冰完成签到 ,获得积分20
2秒前
2秒前
2秒前
胡桃夹子发布了新的文献求助30
2秒前
3秒前
syxz0628发布了新的文献求助10
3秒前
都可以完成签到,获得积分10
3秒前
科研通AI5应助qfchen0716网易采纳,获得10
4秒前
JamesPei应助qfchen0716网易采纳,获得10
4秒前
丘比特应助qfchen0716网易采纳,获得10
4秒前
子川发布了新的文献求助10
4秒前
田様应助qfchen0716网易采纳,获得10
4秒前
科目三应助qfchen0716网易采纳,获得10
5秒前
黄紫红蓝应助qfchen0716网易采纳,获得10
5秒前
rr发布了新的文献求助10
5秒前
科目三应助qfchen0716网易采纳,获得10
5秒前
Orange应助qfchen0716网易采纳,获得10
5秒前
FashionBoy应助qfchen0716网易采纳,获得10
5秒前
今后应助qfchen0716网易采纳,获得10
5秒前
汉堡包应助Rober采纳,获得10
5秒前
6秒前
8秒前
哈哈哈哈发布了新的文献求助10
8秒前
张大旭77发布了新的文献求助10
9秒前
11秒前
科研通AI5应助感动苡采纳,获得10
12秒前
雪山大地完成签到,获得积分10
12秒前
Beton_X发布了新的文献求助40
13秒前
14秒前
14秒前
嘿嘿嘿发布了新的文献求助10
14秒前
14秒前
15秒前
小肥鑫发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676