Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization

隐藏字幕 计算机科学 判别式 卷积神经网络 人工智能 可视化 一般化 班级(哲学) 答疑 背景(考古学) 上下文图像分类 任务(项目管理) 机器学习 模式识别(心理学) 图像(数学) 古生物学 数学分析 经济 管理 生物 数学
作者
Ramprasaath R. Selvaraju,Michael Cogswell,Abhishek Das,Ramakrishna Vedantam,Devi Parikh,Dhruv Batra
出处
期刊:International Conference on Computer Vision 卷期号:: 618-626 被引量:18673
标识
DOI:10.1109/iccv.2017.74
摘要

We propose a technique for producing `visual explanations' for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent. Our approach - Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say logits for `dog' or even a caption), flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept. Unlike previous approaches, Grad- CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers (e.g. VGG), (2) CNNs used for structured outputs (e.g. captioning), (3) CNNs used in tasks with multi-modal inputs (e.g. visual question answering) or reinforcement learning, without architectural changes or re-training. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and apply it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into failure modes of these models (showing that seemingly unreasonable predictions have reasonable explanations), (b) outperform previous methods on the ILSVRC-15 weakly-supervised localization task, (c) are more faithful to the underlying model, and (d) help achieve model generalization by identifying dataset bias. For image captioning and VQA, our visualizations show even non-attention based models can localize inputs. Finally, we design and conduct human studies to measure if Grad-CAM explanations help users establish appropriate trust in predictions from deep networks and show that Grad-CAM helps untrained users successfully discern a `stronger' deep network from a `weaker' one even when both make identical predictions. Our code is available at https: //github.com/ramprs/grad-cam/ along with a demo on CloudCV [2] and video at youtu.be/COjUB9Izk6E.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
呼呼呼你发布了新的文献求助30
刚刚
Hhhhh发布了新的文献求助10
刚刚
俭朴听双完成签到,获得积分10
1秒前
2秒前
orixero应助Wzh采纳,获得10
2秒前
wy发布了新的文献求助10
2秒前
2秒前
大观天下发布了新的文献求助10
2秒前
科研通AI6应助two采纳,获得10
3秒前
紫曦发布了新的社区帖子
3秒前
3秒前
糖糖完成签到,获得积分10
4秒前
所所应助乐观的致远采纳,获得10
5秒前
陈梓发布了新的文献求助10
6秒前
Rodeo发布了新的文献求助50
6秒前
SZF完成签到,获得积分10
8秒前
xxfsx应助Hhhhh采纳,获得10
9秒前
持刀的辣条应助糖糖采纳,获得10
9秒前
9秒前
星辰大海应助若离采纳,获得10
9秒前
香蕉觅云应助牧紫菱采纳,获得10
10秒前
北北北发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
13秒前
高小h发布了新的文献求助10
13秒前
14秒前
领导范儿应助小勇仔采纳,获得10
14秒前
顾矜应助符双双采纳,获得10
14秒前
Rae发布了新的文献求助10
17秒前
17秒前
伟川周完成签到 ,获得积分10
18秒前
tjxhtj完成签到,获得积分10
19秒前
高小h完成签到,获得积分10
19秒前
19秒前
赘婿应助科研通管家采纳,获得10
20秒前
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442461
求助须知:如何正确求助?哪些是违规求助? 4552718
关于积分的说明 14238070
捐赠科研通 4473972
什么是DOI,文献DOI怎么找? 2451801
邀请新用户注册赠送积分活动 1442690
关于科研通互助平台的介绍 1418574