材料科学
钠
化学工程
锂离子电池的纳米结构
阳极
二氧化钛
纳米技术
钛
兴奋剂
磷
离子
无机化学
电极
光电子学
化学
物理化学
有机化学
工程类
冶金
作者
Qingmeng Gan,Hanna He,Youhuan Zhu,Zhenyu Wang,Ning Qin,Shuai Gu,Zhiqiang Li,Wen Luo,Zhouguang Lu
出处
期刊:ACS Nano
[American Chemical Society]
日期:2019-07-23
卷期号:13 (8): 9247-9258
被引量:215
标识
DOI:10.1021/acsnano.9b03766
摘要
Phosphorus doping is an effective strategy to simultaneously improve the electronic conductivity and regulate the ionic diffusion kinetics of TiO2 being considered as anode materials for sodium ion batteries. However, efficient phosphorus doping at high concentration in well-crystallized TiO2 nanoparticles is still a big challenge. Herein, we propose a defect-assisted phosphorus doping strategy to selectively engineer the surface structure of TiO2 nanoparticles. The reduced TiO2-x shell layer that is rich in oxygen defects and Ti3+ species precisely triggered a high concentration of phosphorus doping (∼7.8 at. %), and consequently a TiO2@TiO2-x-P core@shell architecture was produced. Comprehensive characterizations and first-principle calculations proved that the surface-functionalized TiO2-x-P thin layer endowed the TiO2@TiO2-x-P with substantially enhanced electronic conductivity and accelerated Na ion transportation, resulting in great rate capability (167 mA h g-1 at 10 000 mA g-1) and stable cycling (99% after 5000 cycles at 10 A g-1). Combining in/ex situ X-ray diffraction with ex situ electron spin resonance clearly demonstrated the high reversibility and robust mechanical behavior of TiO2@TiO2-x-P upon long-term cycling. This work provides an interesting and effective strategy for precise heteroatoms doping to improve the electrochemical performance of nanoparticles.
科研通智能强力驱动
Strongly Powered by AbleSci AI