Charge Carrier Cooling Bottleneck Opens Up Nonexcitonic Gain Mechanisms in Colloidal CdSe Quantum Wells

激子 莫特跃迁 材料科学 量子阱 皮秒 载流子 光子学 比克西顿 超短脉冲 激发 俄歇效应 光电子学 化学物理 凝聚态物理 螺旋钻 物理 激光器 原子物理学 赫巴德模型 光学 超导电性 量子力学
作者
Renu Tomar,Aditya Kulkarni,Kai Chen,Shalini Singh,Dries Van Thourhout,Justin M. Hodgkiss,Laurens D. A. Siebbeles,Zeger Hens,Pieter Geiregat
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:123 (14): 9640-9650 被引量:42
标识
DOI:10.1021/acs.jpcc.9b02085
摘要

Ultrathin two-dimensional (2D) materials have received much attention in the past years for a wide variety of photonic applications because of their pronounced room-temperature excitonic features, leading to unique properties in terms of light–matter interaction. However, only a few studies focus on light amplification and the complex photophysics at high excitation density. The beneficial nature of strong excitonic effects on optical gain remain hence unquantified, and despite the increased binding energies of the excitonic species, it remains unclear what the involvement of 2D excitons would be in optical gain. Here, we use colloidal CdSe nanoplatelets as a model system for colloidal 2D materials and show, using a quantitative and combinatory approach to ultrafast spectroscopy, that several excitation density-dependent optical gain regimes exist. At low density, optical gain originates from excitonic molecules delivering large material gains up to 20 000 cm–1 with an Auger limited lifetime of a few hundred picoseconds. At increasing pair density, we observe a persistence of this excitonic gain regime and the unexpected coexistence of blue-shifted and significantly enhanced optical gain up to 105 cm–1. We show that this peculiar situation originates from a carrier cooling bottleneck at high density that limits further exciton formation from unbound charge carriers. The insulating (multi-)exciton gas is found to coexist with the conductive phase, indicating the absence of a full Mott transition. Our results shed a new light on the photophysics of excitons in strongly excited 2D materials and pave the way for the development of more efficient (broadband) optical gain media and/or high exciton density applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XHY123完成签到,获得积分10
刚刚
zhp发布了新的文献求助10
刚刚
刚刚
小巧孤晴完成签到,获得积分10
刚刚
hbhbj发布了新的文献求助10
刚刚
jiang应助aaa采纳,获得20
1秒前
小杭76应助伽古拉40k采纳,获得10
1秒前
科研通AI6应助浪荡胭脂马采纳,获得10
2秒前
Violazheng228发布了新的文献求助10
3秒前
Yichao完成签到,获得积分10
3秒前
冷静剑鬼完成签到,获得积分10
3秒前
Wangle发布了新的文献求助10
3秒前
学习发布了新的文献求助10
3秒前
LIBINWANG发布了新的文献求助30
3秒前
虚心的夜山完成签到,获得积分10
4秒前
4秒前
elysia发布了新的文献求助10
4秒前
7秒前
7秒前
8秒前
坚定的怜菡完成签到,获得积分20
8秒前
田様应助负责的元柏采纳,获得10
9秒前
9秒前
落寞成危完成签到,获得积分20
9秒前
10秒前
学习完成签到,获得积分20
10秒前
hbhbj发布了新的文献求助10
10秒前
Doc邓爱科研完成签到,获得积分10
10秒前
王译自发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
安然发布了新的文献求助10
12秒前
小二郎应助elysia采纳,获得10
12秒前
独特振家发布了新的文献求助10
12秒前
12秒前
12秒前
Criminology34应助修辛采纳,获得10
13秒前
LIBINWANG完成签到,获得积分20
13秒前
喵喵喵发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406795
求助须知:如何正确求助?哪些是违规求助? 4524516
关于积分的说明 14098938
捐赠科研通 4438379
什么是DOI,文献DOI怎么找? 2436217
邀请新用户注册赠送积分活动 1428245
关于科研通互助平台的介绍 1406340