Charge Carrier Cooling Bottleneck Opens Up Nonexcitonic Gain Mechanisms in Colloidal CdSe Quantum Wells

激子 莫特跃迁 材料科学 量子阱 皮秒 载流子 光子学 比克西顿 超短脉冲 激发 俄歇效应 光电子学 化学物理 凝聚态物理 螺旋钻 物理 激光器 原子物理学 赫巴德模型 光学 量子力学 超导电性
作者
Renu Tomar,Aditya Kulkarni,Kai Chen,Shalini Singh,Dries Van Thourhout,Justin M. Hodgkiss,Laurens D. A. Siebbeles,Zeger Hens,Pieter Geiregat
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:123 (14): 9640-9650 被引量:42
标识
DOI:10.1021/acs.jpcc.9b02085
摘要

Ultrathin two-dimensional (2D) materials have received much attention in the past years for a wide variety of photonic applications because of their pronounced room-temperature excitonic features, leading to unique properties in terms of light–matter interaction. However, only a few studies focus on light amplification and the complex photophysics at high excitation density. The beneficial nature of strong excitonic effects on optical gain remain hence unquantified, and despite the increased binding energies of the excitonic species, it remains unclear what the involvement of 2D excitons would be in optical gain. Here, we use colloidal CdSe nanoplatelets as a model system for colloidal 2D materials and show, using a quantitative and combinatory approach to ultrafast spectroscopy, that several excitation density-dependent optical gain regimes exist. At low density, optical gain originates from excitonic molecules delivering large material gains up to 20 000 cm–1 with an Auger limited lifetime of a few hundred picoseconds. At increasing pair density, we observe a persistence of this excitonic gain regime and the unexpected coexistence of blue-shifted and significantly enhanced optical gain up to 105 cm–1. We show that this peculiar situation originates from a carrier cooling bottleneck at high density that limits further exciton formation from unbound charge carriers. The insulating (multi-)exciton gas is found to coexist with the conductive phase, indicating the absence of a full Mott transition. Our results shed a new light on the photophysics of excitons in strongly excited 2D materials and pave the way for the development of more efficient (broadband) optical gain media and/or high exciton density applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
腾腾发布了新的文献求助10
刚刚
知性的觅露完成签到,获得积分10
刚刚
动人的珩发布了新的文献求助10
2秒前
珊啊是珊珊啊完成签到 ,获得积分10
2秒前
3秒前
chai发布了新的文献求助10
3秒前
顾矜应助苏锦霖采纳,获得30
3秒前
盛行西风完成签到,获得积分10
3秒前
饶天源发布了新的文献求助10
3秒前
星辰大海应助聪明的毛衣采纳,获得10
4秒前
WUWEI发布了新的文献求助10
4秒前
5秒前
纯真怜梦发布了新的文献求助10
5秒前
小吕发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
TONONO发布了新的文献求助10
6秒前
6秒前
体贴薯片发布了新的文献求助10
7秒前
orixero应助李木槿采纳,获得10
7秒前
7秒前
文静绮梅完成签到 ,获得积分10
7秒前
缥缈之桃完成签到,获得积分10
7秒前
lcs完成签到,获得积分10
7秒前
8秒前
丘比特应助科研小达子采纳,获得10
9秒前
阿梓i喵桑发布了新的文献求助20
9秒前
9秒前
9秒前
10秒前
FashionBoy应助Chen采纳,获得10
11秒前
12秒前
蓦回发布了新的文献求助10
12秒前
gogpou完成签到,获得积分10
13秒前
Kayson完成签到 ,获得积分10
13秒前
ouyueling完成签到,获得积分10
13秒前
NexusExplorer应助寂寞的映秋采纳,获得10
14秒前
14秒前
完美的雅香完成签到,获得积分10
14秒前
Jasper应助留胡子的代天采纳,获得10
14秒前
受伤破茧发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727744
求助须知:如何正确求助?哪些是违规求助? 5309981
关于积分的说明 15312237
捐赠科研通 4875187
什么是DOI,文献DOI怎么找? 2618600
邀请新用户注册赠送积分活动 1568248
关于科研通互助平台的介绍 1524927