Charge Carrier Cooling Bottleneck Opens Up Nonexcitonic Gain Mechanisms in Colloidal CdSe Quantum Wells

激子 莫特跃迁 材料科学 量子阱 皮秒 载流子 光子学 比克西顿 超短脉冲 激发 俄歇效应 光电子学 化学物理 凝聚态物理 螺旋钻 物理 激光器 原子物理学 赫巴德模型 光学 超导电性 量子力学
作者
Renu Tomar,Aditya Kulkarni,Kai Chen,Shalini Singh,Dries Van Thourhout,Justin M. Hodgkiss,Laurens D. A. Siebbeles,Zeger Hens,Pieter Geiregat
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:123 (14): 9640-9650 被引量:42
标识
DOI:10.1021/acs.jpcc.9b02085
摘要

Ultrathin two-dimensional (2D) materials have received much attention in the past years for a wide variety of photonic applications because of their pronounced room-temperature excitonic features, leading to unique properties in terms of light–matter interaction. However, only a few studies focus on light amplification and the complex photophysics at high excitation density. The beneficial nature of strong excitonic effects on optical gain remain hence unquantified, and despite the increased binding energies of the excitonic species, it remains unclear what the involvement of 2D excitons would be in optical gain. Here, we use colloidal CdSe nanoplatelets as a model system for colloidal 2D materials and show, using a quantitative and combinatory approach to ultrafast spectroscopy, that several excitation density-dependent optical gain regimes exist. At low density, optical gain originates from excitonic molecules delivering large material gains up to 20 000 cm–1 with an Auger limited lifetime of a few hundred picoseconds. At increasing pair density, we observe a persistence of this excitonic gain regime and the unexpected coexistence of blue-shifted and significantly enhanced optical gain up to 105 cm–1. We show that this peculiar situation originates from a carrier cooling bottleneck at high density that limits further exciton formation from unbound charge carriers. The insulating (multi-)exciton gas is found to coexist with the conductive phase, indicating the absence of a full Mott transition. Our results shed a new light on the photophysics of excitons in strongly excited 2D materials and pave the way for the development of more efficient (broadband) optical gain media and/or high exciton density applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩虹儿应助dongsheng采纳,获得10
1秒前
1秒前
ddddansu发布了新的文献求助10
2秒前
3秒前
3秒前
l1844852731完成签到 ,获得积分10
4秒前
小二郎应助老迟到的幼枫采纳,获得10
4秒前
深情隶完成签到,获得积分10
4秒前
AN发布了新的文献求助10
4秒前
向晚完成签到 ,获得积分10
5秒前
5秒前
打打应助JBY采纳,获得10
6秒前
香蕉觅云应助lvxinda采纳,获得10
6秒前
6秒前
Zzz完成签到,获得积分10
7秒前
HmH完成签到,获得积分10
7秒前
佳佳完成签到,获得积分10
7秒前
情怀应助MoonByMoon采纳,获得10
7秒前
123发布了新的文献求助30
7秒前
7秒前
8秒前
ddddansu完成签到,获得积分10
8秒前
科研通AI5应助美丽秋蝶采纳,获得10
8秒前
沈沈完成签到,获得积分10
9秒前
jing发布了新的文献求助10
9秒前
wxr完成签到 ,获得积分10
9秒前
9秒前
11秒前
一棵完成签到 ,获得积分10
11秒前
qiao完成签到,获得积分10
11秒前
11秒前
汉堡包应助Pendulium采纳,获得10
12秒前
hdbys完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
周轩完成签到,获得积分10
14秒前
liusj完成签到,获得积分10
14秒前
ss发布了新的文献求助10
14秒前
Miyo完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097673
求助须知:如何正确求助?哪些是违规求助? 4310117
关于积分的说明 13429226
捐赠科研通 4137515
什么是DOI,文献DOI怎么找? 2266700
邀请新用户注册赠送积分活动 1269881
关于科研通互助平台的介绍 1206170