Charge Carrier Cooling Bottleneck Opens Up Nonexcitonic Gain Mechanisms in Colloidal CdSe Quantum Wells

激子 莫特跃迁 材料科学 量子阱 皮秒 载流子 光子学 比克西顿 超短脉冲 激发 俄歇效应 光电子学 化学物理 凝聚态物理 螺旋钻 物理 激光器 原子物理学 赫巴德模型 光学 量子力学 超导电性
作者
Renu Tomar,Aditya Kulkarni,Kai Chen,Shalini Singh,Dries Van Thourhout,Justin M. Hodgkiss,Laurens D. A. Siebbeles,Zeger Hens,Pieter Geiregat
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:123 (14): 9640-9650 被引量:42
标识
DOI:10.1021/acs.jpcc.9b02085
摘要

Ultrathin two-dimensional (2D) materials have received much attention in the past years for a wide variety of photonic applications because of their pronounced room-temperature excitonic features, leading to unique properties in terms of light–matter interaction. However, only a few studies focus on light amplification and the complex photophysics at high excitation density. The beneficial nature of strong excitonic effects on optical gain remain hence unquantified, and despite the increased binding energies of the excitonic species, it remains unclear what the involvement of 2D excitons would be in optical gain. Here, we use colloidal CdSe nanoplatelets as a model system for colloidal 2D materials and show, using a quantitative and combinatory approach to ultrafast spectroscopy, that several excitation density-dependent optical gain regimes exist. At low density, optical gain originates from excitonic molecules delivering large material gains up to 20 000 cm–1 with an Auger limited lifetime of a few hundred picoseconds. At increasing pair density, we observe a persistence of this excitonic gain regime and the unexpected coexistence of blue-shifted and significantly enhanced optical gain up to 105 cm–1. We show that this peculiar situation originates from a carrier cooling bottleneck at high density that limits further exciton formation from unbound charge carriers. The insulating (multi-)exciton gas is found to coexist with the conductive phase, indicating the absence of a full Mott transition. Our results shed a new light on the photophysics of excitons in strongly excited 2D materials and pave the way for the development of more efficient (broadband) optical gain media and/or high exciton density applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昊儿虫完成签到 ,获得积分10
刚刚
刚刚
刚刚
教生物的杨教授给教生物的杨教授的求助进行了留言
1秒前
飞小骆驼完成签到,获得积分10
1秒前
路过地球完成签到 ,获得积分10
1秒前
阿美完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
gs发布了新的文献求助10
3秒前
3秒前
研友_841zXL完成签到,获得积分0
3秒前
童宝完成签到,获得积分10
4秒前
天天快乐应助吃菠萝大王采纳,获得10
4秒前
酷波er应助火星上云朵采纳,获得10
4秒前
Hyh_发布了新的文献求助10
4秒前
爱库珀发布了新的文献求助10
5秒前
histhb完成签到,获得积分10
5秒前
搜集达人应助华杰采纳,获得10
5秒前
6秒前
江川直子完成签到,获得积分10
6秒前
xxl1031237415发布了新的文献求助10
7秒前
7秒前
NIHAO发布了新的文献求助10
7秒前
Parsifal发布了新的文献求助30
8秒前
limz完成签到,获得积分10
8秒前
8秒前
Jiayou Zhang发布了新的文献求助10
9秒前
王kk发布了新的文献求助10
9秒前
唐氏梦蝴蝶关注了科研通微信公众号
9秒前
小马甲应助断了的弦采纳,获得10
9秒前
烟花应助yyryyrr采纳,获得10
10秒前
科研通AI6应助复杂的宝莹采纳,获得10
10秒前
11秒前
11秒前
Argetlam2012完成签到 ,获得积分10
11秒前
11秒前
脑洞疼应助专一的无颜采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519544
求助须知:如何正确求助?哪些是违规求助? 4611607
关于积分的说明 14529535
捐赠科研通 4549077
什么是DOI,文献DOI怎么找? 2492697
邀请新用户注册赠送积分活动 1473841
关于科研通互助平台的介绍 1445668