Charge Carrier Cooling Bottleneck Opens Up Nonexcitonic Gain Mechanisms in Colloidal CdSe Quantum Wells

激子 莫特跃迁 材料科学 量子阱 皮秒 载流子 光子学 比克西顿 超短脉冲 激发 俄歇效应 光电子学 化学物理 凝聚态物理 螺旋钻 物理 激光器 原子物理学 赫巴德模型 光学 超导电性 量子力学
作者
Renu Tomar,Aditya Kulkarni,Kai Chen,Shalini Singh,Dries Van Thourhout,Justin M. Hodgkiss,Laurens D. A. Siebbeles,Zeger Hens,Pieter Geiregat
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:123 (14): 9640-9650 被引量:42
标识
DOI:10.1021/acs.jpcc.9b02085
摘要

Ultrathin two-dimensional (2D) materials have received much attention in the past years for a wide variety of photonic applications because of their pronounced room-temperature excitonic features, leading to unique properties in terms of light–matter interaction. However, only a few studies focus on light amplification and the complex photophysics at high excitation density. The beneficial nature of strong excitonic effects on optical gain remain hence unquantified, and despite the increased binding energies of the excitonic species, it remains unclear what the involvement of 2D excitons would be in optical gain. Here, we use colloidal CdSe nanoplatelets as a model system for colloidal 2D materials and show, using a quantitative and combinatory approach to ultrafast spectroscopy, that several excitation density-dependent optical gain regimes exist. At low density, optical gain originates from excitonic molecules delivering large material gains up to 20 000 cm–1 with an Auger limited lifetime of a few hundred picoseconds. At increasing pair density, we observe a persistence of this excitonic gain regime and the unexpected coexistence of blue-shifted and significantly enhanced optical gain up to 105 cm–1. We show that this peculiar situation originates from a carrier cooling bottleneck at high density that limits further exciton formation from unbound charge carriers. The insulating (multi-)exciton gas is found to coexist with the conductive phase, indicating the absence of a full Mott transition. Our results shed a new light on the photophysics of excitons in strongly excited 2D materials and pave the way for the development of more efficient (broadband) optical gain media and/or high exciton density applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
陶醉朝雪发布了新的文献求助10
1秒前
Evol完成签到,获得积分10
2秒前
2秒前
2秒前
悠然地八音完成签到,获得积分10
2秒前
meetland完成签到 ,获得积分10
3秒前
3秒前
归尘发布了新的文献求助10
4秒前
rickyly完成签到,获得积分10
4秒前
oxs发布了新的文献求助10
4秒前
强健的梦蕊完成签到,获得积分10
4秒前
4秒前
General发布了新的文献求助10
5秒前
Zhusy发布了新的文献求助10
5秒前
6秒前
Jasper应助kaida采纳,获得10
7秒前
研友_nVNBVn发布了新的文献求助10
7秒前
无花果应助米九采纳,获得10
7秒前
cindy发布了新的文献求助10
8秒前
小马甲应助Yuan采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
nn发布了新的文献求助50
8秒前
Orange应助alkaidt采纳,获得10
8秒前
Xzmmmm完成签到,获得积分10
9秒前
yjq关注了科研通微信公众号
10秒前
10秒前
11秒前
高唐完成签到,获得积分10
11秒前
12秒前
知识进脑子吧完成签到,获得积分10
12秒前
12秒前
许七安完成签到,获得积分10
13秒前
13秒前
Claudplz完成签到,获得积分10
14秒前
体贴的夜山完成签到 ,获得积分10
14秒前
慕青应助iorpi采纳,获得10
14秒前
14秒前
zj发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490563
求助须知:如何正确求助?哪些是违规求助? 4589061
关于积分的说明 14423410
捐赠科研通 4521097
什么是DOI,文献DOI怎么找? 2477169
邀请新用户注册赠送积分活动 1462514
关于科研通互助平台的介绍 1435329