Computerized identification of early ischemic changes in acute stroke in noncontrast CT using deep learning

脑岛 冲程(发动机) 医学 人工智能 放射科 计算机科学 心理学 神经科学 机械工程 工程类
作者
Noriyuki Takahashi,Yuki Shinohara,Toshibumi Kinoshita,Tomomi Ohmura,Keisuke Matsubara,Yongbum Lee,Hideto Toyoshima
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 卷期号:: 118-118 被引量:8
标识
DOI:10.1117/12.2507351
摘要

Treatment for patients with acute ischemic stroke is most commonly determined based on findings on noncontrast computerized tomography (CT). Identifying hypoattenuation of the early ischemic changes on CT images is crucial for diagnosis. However, it is difficult to identify hypoattenuation with certainty. We present an atlas-based computerized method using a convolutional neural network (CNN) to identify hypoattenuation in the lentiform nucleus and the insula, two locations where hypoattenuation appears most frequently. The algorithm for this method consisted of anatomic standardization, setting of regions, creation of input images for classification, training on the CNN and classification of hypoattenuation. The regions of the lentiform nucleus and insula were set according to the Alberta Stroke Programme Early CT score (ASPECTS) method, a visual quantitative CT scoring system. AlexNet was used in the classification of the CNN architecture. We applied this method to the lentiform nucleus and insula using a database of 20 patients with right-sided hypoattenuation, 20 patients with left-sided hypoattenuation, and 20 normal subjects. Our method was evaluated using a leave-one-case-out cross-validation test. This new method had an average accuracy of 88.3%, an average sensitivity of 87.5%, and an average specificity of 90% for identifying hypoattenuation in the two regions. These results indicate that this new method has the potential to accurately identify hypoattenuation in the lentiform nucleus and the insula in patients with acute ischemic stroke.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助叶y采纳,获得10
刚刚
123444发布了新的文献求助10
3秒前
3秒前
TYJ完成签到,获得积分20
3秒前
4秒前
kedaya应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
kk2024应助科研通管家采纳,获得20
4秒前
Ava应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
ED应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
5秒前
李7完成签到,获得积分20
7秒前
852应助123444采纳,获得10
7秒前
8秒前
Aria发布了新的文献求助10
8秒前
8秒前
8秒前
mi完成签到,获得积分10
11秒前
11秒前
12秒前
Jenny发布了新的文献求助10
12秒前
12秒前
zzqblue发布了新的文献求助10
13秒前
哈哈哈完成签到,获得积分10
13秒前
完美世界应助牛牛眉目采纳,获得10
16秒前
吕不韦发布了新的文献求助10
18秒前
念姬发布了新的文献求助10
18秒前
黑猫小苍完成签到,获得积分10
20秒前
涂图完成签到,获得积分10
20秒前
20秒前
fsf完成签到,获得积分10
26秒前
幸福的向彤完成签到,获得积分10
27秒前
打打应助WangT采纳,获得10
27秒前
27秒前
思思完成签到 ,获得积分10
28秒前
卢莹完成签到,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966324
求助须知:如何正确求助?哪些是违规求助? 3511740
关于积分的说明 11159404
捐赠科研通 3246305
什么是DOI,文献DOI怎么找? 1793370
邀请新用户注册赠送积分活动 874364
科研通“疑难数据库(出版商)”最低求助积分说明 804357