亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Computerized identification of early ischemic changes in acute stroke in noncontrast CT using deep learning

脑岛 冲程(发动机) 医学 人工智能 放射科 计算机科学 心理学 神经科学 机械工程 工程类
作者
Noriyuki Takahashi,Yuki Shinohara,Toshibumi Kinoshita,Tomomi Ohmura,Keisuke Matsubara,Yongbum Lee,Hideto Toyoshima
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 卷期号:: 118-118 被引量:8
标识
DOI:10.1117/12.2507351
摘要

Treatment for patients with acute ischemic stroke is most commonly determined based on findings on noncontrast computerized tomography (CT). Identifying hypoattenuation of the early ischemic changes on CT images is crucial for diagnosis. However, it is difficult to identify hypoattenuation with certainty. We present an atlas-based computerized method using a convolutional neural network (CNN) to identify hypoattenuation in the lentiform nucleus and the insula, two locations where hypoattenuation appears most frequently. The algorithm for this method consisted of anatomic standardization, setting of regions, creation of input images for classification, training on the CNN and classification of hypoattenuation. The regions of the lentiform nucleus and insula were set according to the Alberta Stroke Programme Early CT score (ASPECTS) method, a visual quantitative CT scoring system. AlexNet was used in the classification of the CNN architecture. We applied this method to the lentiform nucleus and insula using a database of 20 patients with right-sided hypoattenuation, 20 patients with left-sided hypoattenuation, and 20 normal subjects. Our method was evaluated using a leave-one-case-out cross-validation test. This new method had an average accuracy of 88.3%, an average sensitivity of 87.5%, and an average specificity of 90% for identifying hypoattenuation in the two regions. These results indicate that this new method has the potential to accurately identify hypoattenuation in the lentiform nucleus and the insula in patients with acute ischemic stroke.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助逆天大脚采纳,获得10
3秒前
丘比特应助可靠的寒风采纳,获得10
11秒前
科研通AI2S应助H_C采纳,获得10
32秒前
39秒前
1分钟前
clover发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
Jack发布了新的文献求助10
2分钟前
LYT完成签到 ,获得积分20
2分钟前
2分钟前
mengliu完成签到,获得积分10
2分钟前
FashionBoy应助Jack采纳,获得10
2分钟前
糕糕完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助可靠的寒风采纳,获得10
2分钟前
2分钟前
3分钟前
逆天大脚发布了新的文献求助10
3分钟前
3分钟前
逆天大脚完成签到,获得积分10
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
4分钟前
Davy_Y发布了新的文献求助10
4分钟前
4分钟前
多读苏发布了新的文献求助10
4分钟前
隐形曼青应助Davy_Y采纳,获得10
4分钟前
4分钟前
jyy应助落寞奎采纳,获得10
4分钟前
5分钟前
5分钟前
Sarah发布了新的文献求助10
5分钟前
6分钟前
Lucas应助钟可可采纳,获得10
6分钟前
Jack发布了新的文献求助10
6分钟前
情怀应助Jack采纳,获得10
6分钟前
7分钟前
科研垃圾发布了新的文献求助10
7分钟前
科研垃圾完成签到,获得积分20
7分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335317
求助须知:如何正确求助?哪些是违规求助? 2964501
关于积分的说明 8614028
捐赠科研通 2643363
什么是DOI,文献DOI怎么找? 1447385
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658974