Computerized identification of early ischemic changes in acute stroke in noncontrast CT using deep learning

脑岛 冲程(发动机) 医学 人工智能 放射科 计算机科学 心理学 神经科学 机械工程 工程类
作者
Noriyuki Takahashi,Yuki Shinohara,Toshibumi Kinoshita,Tomomi Ohmura,Keisuke Matsubara,Yongbum Lee,Hideto Toyoshima
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 卷期号:: 118-118 被引量:8
标识
DOI:10.1117/12.2507351
摘要

Treatment for patients with acute ischemic stroke is most commonly determined based on findings on noncontrast computerized tomography (CT). Identifying hypoattenuation of the early ischemic changes on CT images is crucial for diagnosis. However, it is difficult to identify hypoattenuation with certainty. We present an atlas-based computerized method using a convolutional neural network (CNN) to identify hypoattenuation in the lentiform nucleus and the insula, two locations where hypoattenuation appears most frequently. The algorithm for this method consisted of anatomic standardization, setting of regions, creation of input images for classification, training on the CNN and classification of hypoattenuation. The regions of the lentiform nucleus and insula were set according to the Alberta Stroke Programme Early CT score (ASPECTS) method, a visual quantitative CT scoring system. AlexNet was used in the classification of the CNN architecture. We applied this method to the lentiform nucleus and insula using a database of 20 patients with right-sided hypoattenuation, 20 patients with left-sided hypoattenuation, and 20 normal subjects. Our method was evaluated using a leave-one-case-out cross-validation test. This new method had an average accuracy of 88.3%, an average sensitivity of 87.5%, and an average specificity of 90% for identifying hypoattenuation in the two regions. These results indicate that this new method has the potential to accurately identify hypoattenuation in the lentiform nucleus and the insula in patients with acute ischemic stroke.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tfldog发布了新的文献求助10
刚刚
ssy完成签到,获得积分10
1秒前
2秒前
维洛尼亚发布了新的文献求助10
2秒前
小肚饱饱完成签到 ,获得积分10
2秒前
Criminology34应助小池采纳,获得10
3秒前
灵巧忆南完成签到,获得积分20
3秒前
33发布了新的文献求助10
3秒前
4秒前
善学以致用应助ymxlcfc采纳,获得10
4秒前
5秒前
李治稳发布了新的文献求助10
5秒前
dylan完成签到,获得积分10
5秒前
5秒前
Mrs.yang完成签到,获得积分10
5秒前
Xieyusen完成签到,获得积分10
6秒前
6秒前
yongren完成签到,获得积分10
7秒前
7秒前
7秒前
cocj完成签到,获得积分10
8秒前
星辰大海应助不是山谷采纳,获得10
8秒前
8秒前
冷艳新波发布了新的文献求助10
8秒前
菜鸟完成签到,获得积分10
8秒前
9秒前
OSASACB完成签到 ,获得积分10
11秒前
Xj发布了新的文献求助10
12秒前
DLJ发布了新的文献求助10
12秒前
玛卡巴卡发布了新的文献求助10
13秒前
evergarden完成签到 ,获得积分10
13秒前
xiaoshi完成签到,获得积分10
14秒前
加油小李完成签到 ,获得积分10
14秒前
14秒前
15秒前
17秒前
wxj发布了新的文献求助10
17秒前
hk完成签到,获得积分20
18秒前
狂野的采梦完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Handbook of Industrial Inkjet Printing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264515
求助须知:如何正确求助?哪些是违规求助? 4424708
关于积分的说明 13774231
捐赠科研通 4299848
什么是DOI,文献DOI怎么找? 2359416
邀请新用户注册赠送积分活动 1355534
关于科研通互助平台的介绍 1316848