Predicting LiDAR-derived biomass distributions by Weibull models in a subtropical forest

威布尔分布 激光雷达 生物量(生态学) 环境科学 森林资源清查 仰角(弹道) 树(集合论) 遥感 统计 数学 森林经营 地质学 生态学 农林复合经营 生物 几何学 数学分析
作者
Zhengnan Zhang,Lin Cao,Xin Shen,She Guang-hui
标识
DOI:10.1109/eorsa.2018.8598567
摘要

Accurate information on aboveground biomass (AGB) distributions of individual trees is critical to support sustainable forest management, maintain regional carbon cycle and mitigate climate change. Light Detection and Ranging (LiDAR) is a promising active remote sensing technology can provide reliable estimates of forest parameters. Area-based approach (ABA) is appropriate for wall-to-wall estimation of these parameters. In this study, we employed an ABA estimates of AGB by predicting individual tree AGB distributions over a subtropical forest study site. The total plot-level AGB was firstly predicted and the prediction of individual tree AGB distributions was generated by a two-parameter Weibull function. Then the fitted Weibull parameters were further estimated by LiDAR metrics. In addition, all models were assessed by regressed against LiDAR metrics in coniferous forest models. Finally, the stem density for each plot was evaluated by the parameter retrieval method with predicted total AGB and mean tree AGB derived from predicted Weibull parameters of individual tree AGB distribution. The results showed that the AGB and two Weibull parameters were generally predicted well (R 2 =0.79-0.92, rRMSE=8.46%-20.80%). For stem density estimation, the regressed model explained 76% of variability in field stem density. The relationship between predicted and reference AGB distributions when the predicted frequencies of the AGB distributions were scaled to ground-truth stem number (mean Reynolds error index eR=30.83) was relatively stronger than when predicted frequencies were scaled to stem number predicted from LiDAR data (mean eR=33.67). This study demonstrated the distributions of individual forest structural parameters can potentially contribute to enrich ABA forest attributes inventory for airborne LiDAR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜眼神完成签到,获得积分20
1秒前
1秒前
2秒前
3秒前
3秒前
4秒前
4秒前
5秒前
欣喜眼神发布了新的文献求助10
5秒前
SYLH应助坦率莫言采纳,获得10
6秒前
6秒前
科研白菜发布了新的文献求助10
7秒前
打打应助欣喜的冥王星采纳,获得10
7秒前
7秒前
8秒前
绿波电龙发布了新的文献求助150
8秒前
白杨木影子被拉长完成签到,获得积分10
9秒前
冷静发布了新的文献求助10
9秒前
9秒前
zzzz发布了新的文献求助10
9秒前
9秒前
我是老大应助欣喜眼神采纳,获得10
10秒前
雪落你看不见完成签到,获得积分10
10秒前
嘿嘿应助LYB吕采纳,获得10
11秒前
12秒前
Qwe发布了新的文献求助10
13秒前
隐形曼青应助宋宋采纳,获得10
14秒前
田様应助45采纳,获得10
14秒前
蜂蜜罐zi完成签到,获得积分10
15秒前
搜集达人应助魏少爷采纳,获得10
15秒前
FashionBoy应助冬至季采纳,获得10
15秒前
Yuntao_Chen发布了新的文献求助10
15秒前
15秒前
鸭梨鸭梨发布了新的文献求助10
18秒前
18秒前
火星上书本完成签到,获得积分20
19秒前
科研通AI2S应助sciDoge采纳,获得10
20秒前
吴祥坤发布了新的文献求助10
20秒前
21秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975814
求助须知:如何正确求助?哪些是违规求助? 3520123
关于积分的说明 11201020
捐赠科研通 3256502
什么是DOI,文献DOI怎么找? 1798347
邀请新用户注册赠送积分活动 877523
科研通“疑难数据库(出版商)”最低求助积分说明 806417