Predicting LiDAR-derived biomass distributions by Weibull models in a subtropical forest

威布尔分布 激光雷达 生物量(生态学) 环境科学 森林资源清查 仰角(弹道) 树(集合论) 遥感 统计 数学 森林经营 地质学 生态学 农林复合经营 生物 几何学 数学分析
作者
Zhengnan Zhang,Lin Cao,Xin Shen,She Guang-hui
标识
DOI:10.1109/eorsa.2018.8598567
摘要

Accurate information on aboveground biomass (AGB) distributions of individual trees is critical to support sustainable forest management, maintain regional carbon cycle and mitigate climate change. Light Detection and Ranging (LiDAR) is a promising active remote sensing technology can provide reliable estimates of forest parameters. Area-based approach (ABA) is appropriate for wall-to-wall estimation of these parameters. In this study, we employed an ABA estimates of AGB by predicting individual tree AGB distributions over a subtropical forest study site. The total plot-level AGB was firstly predicted and the prediction of individual tree AGB distributions was generated by a two-parameter Weibull function. Then the fitted Weibull parameters were further estimated by LiDAR metrics. In addition, all models were assessed by regressed against LiDAR metrics in coniferous forest models. Finally, the stem density for each plot was evaluated by the parameter retrieval method with predicted total AGB and mean tree AGB derived from predicted Weibull parameters of individual tree AGB distribution. The results showed that the AGB and two Weibull parameters were generally predicted well (R 2 =0.79-0.92, rRMSE=8.46%-20.80%). For stem density estimation, the regressed model explained 76% of variability in field stem density. The relationship between predicted and reference AGB distributions when the predicted frequencies of the AGB distributions were scaled to ground-truth stem number (mean Reynolds error index eR=30.83) was relatively stronger than when predicted frequencies were scaled to stem number predicted from LiDAR data (mean eR=33.67). This study demonstrated the distributions of individual forest structural parameters can potentially contribute to enrich ABA forest attributes inventory for airborne LiDAR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
许起眸发布了新的文献求助10
1秒前
呆萌的源智完成签到 ,获得积分10
1秒前
小余同学发布了新的文献求助10
1秒前
英勇的天蓝完成签到 ,获得积分10
2秒前
三条馋猫发布了新的文献求助10
2秒前
隐形书白发布了新的文献求助10
3秒前
loseyourself完成签到,获得积分10
3秒前
陈大大完成签到,获得积分10
4秒前
4秒前
负责的调料汁完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
倩Q完成签到,获得积分10
7秒前
搞怪莫茗发布了新的文献求助10
8秒前
石中酒完成签到 ,获得积分10
8秒前
Lucas应助顺心火龙果采纳,获得10
8秒前
无限数据线完成签到,获得积分10
10秒前
12秒前
小蘑菇应助等光来采纳,获得10
12秒前
乐乐应助奔波儿灞采纳,获得10
14秒前
AOPs完成签到,获得积分10
15秒前
欧维发布了新的文献求助10
15秒前
热爱科研的刘完成签到,获得积分10
17秒前
无辜的醉波完成签到,获得积分10
17秒前
大模型应助干姜采纳,获得10
18秒前
852应助隐形书白采纳,获得10
18秒前
18秒前
21秒前
ljs完成签到,获得积分10
22秒前
Yen发布了新的文献求助10
22秒前
今后应助vvvaee采纳,获得10
23秒前
23秒前
许起眸给许起眸的求助进行了留言
24秒前
楠LEE发布了新的文献求助10
25秒前
25秒前
梦回与她完成签到,获得积分10
28秒前
28秒前
FashionBoy应助一一采纳,获得30
29秒前
土豆教教主完成签到 ,获得积分10
30秒前
糕糕发布了新的文献求助10
30秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970008
求助须知:如何正确求助?哪些是违规求助? 3514711
关于积分的说明 11175563
捐赠科研通 3250077
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804931