已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting LiDAR-derived biomass distributions by Weibull models in a subtropical forest

威布尔分布 激光雷达 生物量(生态学) 环境科学 森林资源清查 仰角(弹道) 树(集合论) 遥感 统计 数学 森林经营 地质学 生态学 农林复合经营 生物 数学分析 几何学
作者
Zhengnan Zhang,Lin Cao,Xin Shen,She Guang-hui
标识
DOI:10.1109/eorsa.2018.8598567
摘要

Accurate information on aboveground biomass (AGB) distributions of individual trees is critical to support sustainable forest management, maintain regional carbon cycle and mitigate climate change. Light Detection and Ranging (LiDAR) is a promising active remote sensing technology can provide reliable estimates of forest parameters. Area-based approach (ABA) is appropriate for wall-to-wall estimation of these parameters. In this study, we employed an ABA estimates of AGB by predicting individual tree AGB distributions over a subtropical forest study site. The total plot-level AGB was firstly predicted and the prediction of individual tree AGB distributions was generated by a two-parameter Weibull function. Then the fitted Weibull parameters were further estimated by LiDAR metrics. In addition, all models were assessed by regressed against LiDAR metrics in coniferous forest models. Finally, the stem density for each plot was evaluated by the parameter retrieval method with predicted total AGB and mean tree AGB derived from predicted Weibull parameters of individual tree AGB distribution. The results showed that the AGB and two Weibull parameters were generally predicted well (R 2 =0.79-0.92, rRMSE=8.46%-20.80%). For stem density estimation, the regressed model explained 76% of variability in field stem density. The relationship between predicted and reference AGB distributions when the predicted frequencies of the AGB distributions were scaled to ground-truth stem number (mean Reynolds error index eR=30.83) was relatively stronger than when predicted frequencies were scaled to stem number predicted from LiDAR data (mean eR=33.67). This study demonstrated the distributions of individual forest structural parameters can potentially contribute to enrich ABA forest attributes inventory for airborne LiDAR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
放开让我学习完成签到,获得积分10
刚刚
李清竹发布了新的文献求助10
刚刚
llllll发布了新的文献求助10
2秒前
3秒前
_ban完成签到,获得积分10
3秒前
搜集达人应助lx采纳,获得10
4秒前
7秒前
8秒前
sola完成签到 ,获得积分10
8秒前
健忘的煎饼完成签到 ,获得积分10
9秒前
wwwww完成签到 ,获得积分10
10秒前
MJH123456完成签到,获得积分10
13秒前
15秒前
菲1208完成签到,获得积分10
16秒前
菠萝完成签到 ,获得积分10
20秒前
开放冰香完成签到,获得积分10
20秒前
鹿立轩完成签到 ,获得积分10
20秒前
22秒前
隐形曼青应助Taro采纳,获得10
22秒前
已有琦琦勿扰完成签到,获得积分10
23秒前
24秒前
26秒前
朴实凌旋发布了新的文献求助10
28秒前
multimodal完成签到 ,获得积分0
30秒前
孙漪发布了新的文献求助10
30秒前
32秒前
32秒前
巴豆醇完成签到 ,获得积分10
33秒前
桐桐应助du采纳,获得10
34秒前
打打应助老仙翁采纳,获得10
35秒前
量子星尘发布了新的文献求助10
39秒前
asd发布了新的文献求助30
40秒前
哈哈哈完成签到 ,获得积分10
41秒前
王建平完成签到 ,获得积分10
41秒前
牙粽子完成签到,获得积分10
41秒前
吼吼应助科研通管家采纳,获得10
42秒前
吼吼应助科研通管家采纳,获得10
43秒前
香蕉觅云应助科研通管家采纳,获得10
43秒前
嗯嗯应助科研通管家采纳,获得10
43秒前
科研通AI6应助科研通管家采纳,获得100
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680814
求助须知:如何正确求助?哪些是违规求助? 5002251
关于积分的说明 15174220
捐赠科研通 4840651
什么是DOI,文献DOI怎么找? 2594293
邀请新用户注册赠送积分活动 1547351
关于科研通互助平台的介绍 1505310