Machine-Learning-Driven Surface-Enhanced Raman Scattering Optophysiology Reveals Multiplexed Metabolite Gradients Near Cells

细胞外 赫拉 代谢物 谷氨酰胺 癌细胞 纳米探针 糖酵解 生物物理学 分泌物 细胞生物学 肿瘤微环境 生物 生物化学 细胞 材料科学 纳米技术 新陈代谢 癌症 肿瘤细胞 癌症研究 氨基酸 纳米颗粒 遗传学
作者
Félix Lussier,Dimitris Missirlis,Joachim P. Spatz,Jean‐François Masson
出处
期刊:ACS Nano [American Chemical Society]
被引量:121
标识
DOI:10.1021/acsnano.8b07024
摘要

The extracellular environment is a complex medium in which cells secrete and consume metabolites. Molecular gradients are thereby created near cells, triggering various biological and physiological responses. However, investigating these molecular gradients remains challenging because the current tools are ill-suited and provide poor temporal and special resolution while also being destructive. Herein, we report the development and application of a machine learning approach in combination with a surface-enhanced Raman spectroscopy (SERS) nanoprobe to measure simultaneously the gradients of at least eight metabolites in vitro near different cell lines. We found significant increase in the secretion or consumption of lactate, glucose, ATP, glutamine, and urea within 20 μm from the cells surface compared to the bulk. We also observed that cancerous cells (HeLa) compared to fibroblasts (REF52) have a greater glycolytic rate, as is expected for this phenotype. Endothelial (HUVEC) and HeLa cells exhibited significant increase in extracellular ATP compared to the control, shining light on the implication of extracellular ATP within the cancer local environment. Machine-learning-driven SERS optophysiology is generally applicable to metabolites involved in cellular processes, providing a general platform on which to study cell biology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助唐僧洗发用飘柔采纳,获得10
1秒前
lalala完成签到,获得积分10
1秒前
就晚安喽完成签到,获得积分10
1秒前
nuomici发布了新的文献求助10
1秒前
上官若男应助jin采纳,获得100
1秒前
大个应助弱水采纳,获得10
1秒前
1秒前
容荣发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
sjk123完成签到,获得积分10
2秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
ccm应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
chuiza应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
4秒前
慕青应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
圆锥香蕉举报潇洒的灵竹求助涉嫌违规
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
zheng_chen发布了新的文献求助10
4秒前
老张发布了新的文献求助10
4秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
圆锥香蕉应助科研通管家采纳,获得20
5秒前
俭朴的寇应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
em0应助科研通管家采纳,获得10
5秒前
chuiza应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603085
求助须知:如何正确求助?哪些是违规求助? 4012051
关于积分的说明 12421341
捐赠科研通 3692397
什么是DOI,文献DOI怎么找? 2035573
邀请新用户注册赠送积分活动 1068806
科研通“疑难数据库(出版商)”最低求助积分说明 953277