强化学习
航向(导航)
冲突解决
空中交通管制
弹道
计算机科学
控制(管理)
人工智能
极限(数学)
动作(物理)
控制理论(社会学)
工程类
实时计算
数学
航空航天工程
物理
数学分析
量子力学
法学
政治学
天文
作者
Zhuang Wang,Hui Li,Junfeng Wang,Feng Shen
标识
DOI:10.1049/iet-its.2018.5357
摘要
The primary objective of this study is to incorporate the deep reinforcement learning (DRL) technique in conflict detection and resolution (CD&R) control strategies to generate an optimised trajectory for air traffic controllers as reference, in order to improve efficiency and reduce the amount of heading angle change. A DRL environment which can be applied to CD&R agent training is developed. The agent receives the current state of multiple aircrafts in a sector and generates an action to change the heading angle of an aircraft to avoid conflict. A K -Control Actor-Critic algorithm is proposed to limit the number of control times and a two-dimensional continuous action selection policy is utilised. The simulation results show the feasibility of DRL applied in CD&R and there is an obvious advantage in computational efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI