亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimating Driver’s Lane-Change Intent Considering Driving Style and Contextual Traffic

计算机科学 混合模型 凝视 贝叶斯定理 动态贝叶斯网络 驾驶模拟器 高级驾驶员辅助系统 贝叶斯概率 模拟 人工智能
作者
Xiaohan Li,Wenshuo Wang,Matthias Roetting
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:20 (9): 3258-3271 被引量:98
标识
DOI:10.1109/tits.2018.2873595
摘要

Estimating a driver's lane-change (LC) intent is very important so as to avoid traffic accidents caused by improper LC maneuvers. This paper proposes a lane-change Bayesian network (LCBN) incorporated with a Gaussian mixture model (GMM), termed as LCBN-GMM, to estimate a driver's LC intent considering a driver's driving style over varying scenarios. According to the scores made by participates with a behavioral-psychological questionnaire, three driving styles are classified. In order to get more effective labeled LC and lane-keep (LK) data for model training, we propose a gaze-based labeling (GBL) method by monitoring a drivers's gaze behavior, instead of using a time-window labeling method. The capability of LCBN-GMM to estimate a driver's lane-change intent is evaluated in different LC scenarios and driving styles, in comparison to support vector machine and Naive Bayes. Data are collected in a seat-box-based driving simulator where 32 drivers, consisting of 9 aggressive, 15 neutral, and 8 conservative drivers, participated. Experimental results demonstrate that the LCBN-GMM with GBL achieves the best performance, estimating a driver's LC intent an average of 4.5 s ahead of actual LC maneuvers with 78.2% accuracy considering both driving style and contextual traffic, compared with other approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
战战兢兢的失眠完成签到 ,获得积分10
2秒前
6秒前
翻翻发布了新的文献求助10
10秒前
22秒前
24秒前
lyw发布了新的文献求助10
27秒前
29秒前
翻翻完成签到,获得积分10
31秒前
39秒前
40秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
潮鸣完成签到 ,获得积分10
1分钟前
Li发布了新的文献求助10
1分钟前
1分钟前
1分钟前
巫马百招完成签到,获得积分10
1分钟前
lyw发布了新的文献求助10
1分钟前
wanci应助Fortune采纳,获得10
1分钟前
fossick2010完成签到 ,获得积分10
1分钟前
Penny完成签到,获得积分10
2分钟前
2分钟前
Penny发布了新的文献求助10
2分钟前
andrele发布了新的文献求助50
2分钟前
Fortune发布了新的文献求助10
2分钟前
颜安完成签到,获得积分20
2分钟前
张张完成签到 ,获得积分10
2分钟前
2分钟前
Fortune完成签到,获得积分10
2分钟前
Vincent发布了新的文献求助10
2分钟前
爆米花应助lzmcsp采纳,获得10
2分钟前
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
李健应助科研通管家采纳,获得10
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
Vincent完成签到,获得积分10
2分钟前
蓝色牛马完成签到,获得积分10
2分钟前
xuzb发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788513
求助须知:如何正确求助?哪些是违规求助? 5708718
关于积分的说明 15473598
捐赠科研通 4916529
什么是DOI,文献DOI怎么找? 2646443
邀请新用户注册赠送积分活动 1594106
关于科研通互助平台的介绍 1548507