Estimating Driver’s Lane-Change Intent Considering Driving Style and Contextual Traffic

计算机科学 混合模型 凝视 贝叶斯定理 动态贝叶斯网络 驾驶模拟器 高级驾驶员辅助系统 贝叶斯概率 模拟 人工智能
作者
Xiaohan Li,Wenshuo Wang,Matthias Roetting
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:20 (9): 3258-3271 被引量:98
标识
DOI:10.1109/tits.2018.2873595
摘要

Estimating a driver's lane-change (LC) intent is very important so as to avoid traffic accidents caused by improper LC maneuvers. This paper proposes a lane-change Bayesian network (LCBN) incorporated with a Gaussian mixture model (GMM), termed as LCBN-GMM, to estimate a driver's LC intent considering a driver's driving style over varying scenarios. According to the scores made by participates with a behavioral-psychological questionnaire, three driving styles are classified. In order to get more effective labeled LC and lane-keep (LK) data for model training, we propose a gaze-based labeling (GBL) method by monitoring a drivers's gaze behavior, instead of using a time-window labeling method. The capability of LCBN-GMM to estimate a driver's lane-change intent is evaluated in different LC scenarios and driving styles, in comparison to support vector machine and Naive Bayes. Data are collected in a seat-box-based driving simulator where 32 drivers, consisting of 9 aggressive, 15 neutral, and 8 conservative drivers, participated. Experimental results demonstrate that the LCBN-GMM with GBL achieves the best performance, estimating a driver's LC intent an average of 4.5 s ahead of actual LC maneuvers with 78.2% accuracy considering both driving style and contextual traffic, compared with other approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助hope采纳,获得30
刚刚
震千筹发布了新的文献求助10
1秒前
小蘑菇应助积极的天问采纳,获得10
2秒前
秋刀鱼完成签到,获得积分10
4秒前
哈哈哈发布了新的文献求助10
5秒前
a379896033完成签到 ,获得积分10
6秒前
8秒前
8秒前
周涛发布了新的文献求助10
9秒前
鹏宝完成签到,获得积分10
10秒前
10秒前
12秒前
CodeCraft应助rachel03采纳,获得30
12秒前
蔡1发布了新的文献求助10
12秒前
白小白完成签到,获得积分10
13秒前
JamesPei应助李成昊采纳,获得10
13秒前
19秒前
shanjianjie完成签到,获得积分10
19秒前
19秒前
青年才俊发布了新的文献求助10
20秒前
21秒前
浮游应助zhang采纳,获得20
22秒前
23秒前
lalala应助科研通管家采纳,获得10
23秒前
lalala应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
酷波er应助科研通管家采纳,获得10
23秒前
23秒前
lalala应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
24秒前
bkagyin应助科研通管家采纳,获得10
24秒前
lalala应助科研通管家采纳,获得10
24秒前
lalala应助科研通管家采纳,获得10
24秒前
小杭76应助科研通管家采纳,获得10
24秒前
lalala应助科研通管家采纳,获得10
24秒前
桐桐应助科研通管家采纳,获得10
24秒前
changping应助科研通管家采纳,获得10
24秒前
小杭76应助科研通管家采纳,获得10
24秒前
lalala应助科研通管家采纳,获得10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298783
求助须知:如何正确求助?哪些是违规求助? 4447268
关于积分的说明 13841970
捐赠科研通 4332744
什么是DOI,文献DOI怎么找? 2378323
邀请新用户注册赠送积分活动 1373613
关于科研通互助平台的介绍 1339188