计算机科学
卷积(计算机科学)
人工智能
特征提取
编码器
分割
膨胀(度量空间)
卷积神经网络
计算机视觉
模式识别(心理学)
任务(项目管理)
特征(语言学)
集合(抽象数据类型)
图像分割
计算
人工神经网络
算法
数学
工程类
操作系统
组合数学
语言学
哲学
程序设计语言
系统工程
作者
Lichen Zhou,Chuang Zhang,Ming Wu
标识
DOI:10.1109/cvprw.2018.00034
摘要
Road extraction is a fundamental task in the field of remote sensing which has been a hot research topic in the past decade. In this paper, we propose a semantic segmentation neural network, named D-LinkNet, which adopts encoderdecoder structure, dilated convolution and pretrained encoder for road extraction task. The network is built with LinkNet architecture and has dilated convolution layers in its center part. Linknet architecture is efficient in computation and memory. Dilation convolution is a powerful tool that can enlarge the receptive field of feature points without reducing the resolution of the feature maps. In the CVPR DeepGlobe 2018 Road Extraction Challenge, our best IoU scores on the validation set and the test set are 0.6466 and 0.6342 respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI