猕猴
相似性(几何)
神经影像学
神经科学
细胞结构
人脑
连接体
认知
心理学
人工智能
生物
模式识别(心理学)
计算机科学
功能连接
图像(数学)
作者
Jakob Seidlitz,František Váša,Maxwell Shinn,Rafael Romero-García,Kirstie Whitaker,Petra E. Vértes,Konrad Wagstyl,Paul K. Reardon,Liv Clasen,Siyuan Liu,Adam Messinger,David A. Leopold,Peter Fonagy,Raymond J. Dolan,Peter B. Jones,Ian M. Goodyer,Armin Raznahan,Edward T. Bullmore
出处
期刊:Neuron
[Elsevier]
日期:2017-12-21
卷期号:97 (1): 231-247.e7
被引量:378
标识
DOI:10.1016/j.neuron.2017.11.039
摘要
Summary
Macroscopic cortical networks are important for cognitive function, but it remains challenging to construct anatomically plausible individual structural connectomes from human neuroimaging. We introduce a new technique for cortical network mapping based on inter-regional similarity of multiple morphometric parameters measured using multimodal MRI. In three cohorts (two human, one macaque), we find that the resulting morphometric similarity networks (MSNs) have a complex topological organization comprising modules and high-degree hubs. Human MSN modules recapitulate known cortical cytoarchitectonic divisions, and greater inter-regional morphometric similarity was associated with stronger inter-regional co-expression of genes enriched for neuronal terms. Comparing macaque MSNs with tract-tracing data confirmed that morphometric similarity was related to axonal connectivity. Finally, variation in the degree of human MSN nodes accounted for about 40% of between-subject variability in IQ. Morphometric similarity mapping provides a novel, robust, and biologically plausible approach to understanding how human cortical networks underpin individual differences in psychological functions.
科研通智能强力驱动
Strongly Powered by AbleSci AI