亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Creation of a high resolution EEG based Brain Computer Interface for classifying motor imagery of daily life activities

作者
Siju G. Chacko,Prashant Tayade,Simran Kaur,Ratna Sharma
标识
DOI:10.1109/iww-bci.2019.8737258
摘要

Application of Brain Computer Interface (BCI) is revolutionizing control of prosthetic or exoskeleton devices directly through human thought. A BCI is expected to classify day-to-day life activities like grabbing and lifting a glass of water. Currently, motor imagery based BCI for two closely separated muscle groups like grabbing and lifting an object has not been studied. Challenge of classifying motor imagery of these activities accurately could be solved by using individual BCI. We proposed to achieve the same by using a neural network (machine learning) classifier on high resolution (129 channel) EEG data evaluated continuously every 80ms after spatial filtering using spherical Laplacian. This study employed a motor imagery based BCI optimized for individual subjects (n=28) using EEG data of actual movement for classifying motor imagery of grab, lift and grab+lift of right forearm. A three layered neural network with two output nodes was created for classifying the motor imagery using power of 8-14 Hz band of 500 ms EEG data. This BCI was able to classify motor imagery with 95.65% accuracy. In continuous evaluation, BCI showed a True Positive Rate of 24.89% and False Positive Rate of 12.93%. The percentage of correctly classified motor imagery in each trial was 84.99%, 72.23%, 17.07% for grab, lift and combined respectively. In conclusion, the current BCI was able to classify the motor imagery of grab, lift and grab+lift successfully based on EEG of movement data without any prior training of motor imagery based on last 500ms of data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccm应助啊魏采纳,获得10
刚刚
6秒前
13秒前
15秒前
阿楠完成签到,获得积分10
15秒前
木由发布了新的文献求助10
15秒前
姚老表完成签到,获得积分10
17秒前
sy1639完成签到,获得积分10
18秒前
阿楠发布了新的文献求助10
19秒前
只鱼完成签到 ,获得积分10
23秒前
27秒前
漂亮白枫完成签到,获得积分10
27秒前
28秒前
漂亮白枫发布了新的文献求助10
30秒前
8D发布了新的文献求助10
32秒前
34秒前
siwei发布了新的文献求助10
37秒前
8D完成签到,获得积分10
48秒前
你嵙这个期刊没买应助666采纳,获得10
53秒前
闪闪的梦槐完成签到 ,获得积分10
53秒前
朱佳玲完成签到 ,获得积分10
54秒前
54秒前
57秒前
Song完成签到,获得积分10
59秒前
1分钟前
Lion完成签到,获得积分10
1分钟前
1分钟前
王壕发布了新的文献求助10
1分钟前
喜悦宫苴完成签到,获得积分10
1分钟前
一二三四完成签到 ,获得积分10
1分钟前
movinglee完成签到,获得积分10
1分钟前
哈基米德应助科研通管家采纳,获得20
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得30
1分钟前
哈基米德应助科研通管家采纳,获得20
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
哈基米德应助科研通管家采纳,获得20
1分钟前
MSharp_完成签到,获得积分20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301612
求助须知:如何正确求助?哪些是违规求助? 4449085
关于积分的说明 13847800
捐赠科研通 4335167
什么是DOI,文献DOI怎么找? 2380143
邀请新用户注册赠送积分活动 1375107
关于科研通互助平台的介绍 1341144