摘要
Novel phenomena and effects will appear while scaling the dimension(s) of semiconductors down to nano-scale, such as quantum confinement effect, ultra-high electrostatic controllability, and strong light-matter interaction. Among the low dimensional structures, two-dimensional (2D) semiconductors may lead the next resolution in electronic and optoelectronic devices due to their additional feature of high compatibility with traditional micro-fabrication techniques as well as flexible substrates. Up to now, both layered and non-layered materials have been demonstrated to present with 2D geometry. For the former, systematical and in-depth studies are emergently needed considering that pioneering works, especially on transition metal dichalcogenides (TMDs), have been made. Noticeably, inspired by the success of 2D layered materials and the fact that many materials with significant functions have non-layered crystal structures, 2D non-layered materials have attracted increasing attentions. It is based on above challenges and motivations that our research focuses on the design, synthesis and applications of two-dimensional metal chalcogenides semiconductors. In this talk, I will present our recent progress on the following two aspects: (1) 2D layered metal chalcogenide semiconductors: controllable synthesis, properties, electronic and optoelectronic applications. [ 1,2 , 4 - 8 ] (2) Van der Waals epitaxial growth, electronic and optoelectronic properties of 2D non-layered materials, such as CdTe, PbS, Te and Pb 1-x Sn x Se nanosheets. [ 3 , 8-15 ] References: Wen, Q. S Wang, K. M. Cai, R. Q. Cheng, L. Yin, Y. Zhang, J. Li, Z. X. Wang, F. Wang, F. M. Wang, T. A. Shifa, C. Jiang*, H. Lee*, and J. He*, Sci. Adv. 2018 (accepted). Q. Cheng, Y. Wen, L. Yin, F. M. Wang, F. Wang, K. Liu, T. A. Shifa, J. Li, C. Jiang, Z. X. Wang, J. He*, Adv. Mater. 2017, 29 , 1703122. Xu, D. Chen, F. Yang, Z. X. Wang, L. Yin, F. Wang, R. Q. Cheng, K. Liu, J. Xiong, Q. Liu, J. He*, Nano Lett . 2017, 17 , 1065. Wen, L. Yin, P. He, Z. X. Wang, X. Zhang, Q. S. Wang, T. A. Shifa, K. Xu, F. M. Wang, X. Zhan, F. Wang, C. Jiang, and J He*, Nano Lett. 2016, 16 , 6437. Wen, Q. S. Wang, L. Yin, Q. Liu, F. Wang, F. M. Wang, Z. X. Wang, K. Liu, K. Xu, Y. Huang, T. A. Shifa, C. Jiang, J. Xiong and J He*, Adv. Mater. 2016, 28, 8051 . S. Wang, Y. Wen, P. He, L. Yin, Z. X. Wang, F. Wang, K. Xu, Y. Huang, F. M. Wang, C. Jiang and J. He*, Adv. Mater. 2016, 28 , 6497. M. Wang, Y. Li, T. A. Shifa, K. Liu, F. Wang, Z. X. Wang, P. Xu, Q. S. Wang, J. He*, Angew. Chem.-Int. Edit. 2016, 55 , 6919. S. Wang, J. Li, Y. Lei, Y. Wen, Z. X. Wang, X. Zhan, F. Wang, F. M. Wang, Y. Huang, K. Xu and J. He*, Adv. Mater. 2016, 28 , 3596. X. Wang, K. Xu, Y. C. Li, X. Y. Zhan, M. Safdar, Q. S. Wang, F. M. Wang, J. He*, ACS Nano 2014, 8 , 4859. Xu, Z. X. Wang, F. Wang, Y. Huang, F. M. Wang, L. Yin, C. Jiang and J. He*, Adv. Mater. 2015, 27, 7881. Wang, Z. X. Wang, K. Xu, F. M. Wang, Q. S. Wang, Y. Huang, L. Yin and J. He*, Nano Lett. 2015, 15 , 7558. S. Wang, K. Xu, Z. X. Wang, F. Wang, Y. Huang, M. Safdar, X. Y. Zhan, F. M. Wang, Z. Z. Cheng, J. He*, Nano Lett. 2015, 15 , 1183. Safdar, Q. S. Wang, M. Mirza, Z. X. Wang, K. Xu, and J. He*, Nano Lett. 2013, 13 , 5344. S. Wang, K. M. Cai, J. Li, Y. Huang, Z. X. Wang, K. Xu, F. Wang, X. Y. Zhan, F. M. Wang, K. Y. Wang and J. He*, Adv. Mater. 2016, 28 , 617. Safdar, Q. S. Wang, Z. X. Wang, X. Y. Zhan, K. Xu, F. M. Wang, M. Mirza, and J. He*, Nano Lett. 2015, 15 , 2485.