A Prognostic Signature for Lower Grade Gliomas Based on Expression of Long Non-Coding RNAs

胶质瘤 比例危险模型 肿瘤科 内科学 医学 生物信息学 生物 癌症研究
作者
Manjari Kiran,Ajay Chatrath,Xiwei Tang,Daniel M. Keenan,Anindya Dutta
出处
期刊:Molecular Neurobiology [Springer Nature]
卷期号:56 (7): 4786-4798 被引量:82
标识
DOI:10.1007/s12035-018-1416-y
摘要

Diffuse low-grade and intermediate-grade gliomas (together known as lower grade gliomas, WHO grade II and III) develop in the supporting glial cells of brain and are the most common types of primary brain tumor. Despite a better prognosis for lower grade gliomas, 70% of patients undergo high-grade transformation within 10 years, stressing the importance of better prognosis. Long non-coding RNAs (lncRNAs) are gaining attention as potential biomarkers for cancer diagnosis and prognosis. We have developed a computational model, UVA8, for prognosis of lower grade gliomas by combining lncRNA expression, Cox regression, and L1-LASSO penalization. The model was trained on a subset of patients in TCGA. Patients in TCGA, as well as a completely independent validation set (CGGA) could be dichotomized based on their risk score, a linear combination of the level of each prognostic lncRNA weighted by its multivariable Cox regression coefficient. UVA8 is an independent predictor of survival and outperforms standard epidemiological approaches and previous published lncRNA-based predictors as a survival model. Guilt-by-association studies of the lncRNAs in UVA8, all of which predict good outcome, suggest they have a role in suppressing interferon-stimulated response and epithelial to mesenchymal transition. The expression levels of eight lncRNAs can be combined to produce a prognostic tool applicable to diverse populations of glioma patients. The 8 lncRNA (UVA8) based score can identify grade II and grade III glioma patients with poor outcome, and thus identify patients who should receive more aggressive therapy at the outset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaron9898发布了新的文献求助10
刚刚
Daniel完成签到,获得积分10
刚刚
江河湖海关注了科研通微信公众号
刚刚
IKARUTO发布了新的文献求助10
1秒前
3秒前
桐桐应助顺利的雅绿采纳,获得10
3秒前
丰盛的煎饼应助123采纳,获得10
5秒前
aaron9898完成签到,获得积分10
5秒前
ffffan完成签到,获得积分10
5秒前
6秒前
7秒前
小麦完成签到,获得积分10
7秒前
深情安青应助蛋堡采纳,获得10
7秒前
8秒前
搜集达人应助从容的春天采纳,获得10
9秒前
科目三应助糊涂的凡采纳,获得10
9秒前
搜嘎发布了新的文献求助10
9秒前
wanci应助ming采纳,获得10
11秒前
Monkwy完成签到,获得积分10
12秒前
李健应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
starofjlu应助科研通管家采纳,获得30
15秒前
Orange应助科研通管家采纳,获得10
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
15秒前
master应助科研通管家采纳,获得10
15秒前
15秒前
华仔应助科研通管家采纳,获得10
15秒前
15秒前
ST完成签到 ,获得积分10
17秒前
17秒前
satchzhao发布了新的文献求助10
18秒前
汉堡包应助aasdadsad采纳,获得10
20秒前
xiaojcom应助wyw采纳,获得10
22秒前
123完成签到,获得积分10
23秒前
郁李完成签到,获得积分10
24秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157384
求助须知:如何正确求助?哪些是违规求助? 2808832
关于积分的说明 7878535
捐赠科研通 2467168
什么是DOI,文献DOI怎么找? 1313255
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919