亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Prognostic Signature for Lower Grade Gliomas Based on Expression of Long Non-Coding RNAs

胶质瘤 比例危险模型 肿瘤科 内科学 医学 生物信息学 生物 癌症研究
作者
Manjari Kiran,Ajay Chatrath,Xiwei Tang,Daniel M. Keenan,Anindya Dutta
出处
期刊:Molecular Neurobiology [Springer Nature]
卷期号:56 (7): 4786-4798 被引量:88
标识
DOI:10.1007/s12035-018-1416-y
摘要

Diffuse low-grade and intermediate-grade gliomas (together known as lower grade gliomas, WHO grade II and III) develop in the supporting glial cells of brain and are the most common types of primary brain tumor. Despite a better prognosis for lower grade gliomas, 70% of patients undergo high-grade transformation within 10 years, stressing the importance of better prognosis. Long non-coding RNAs (lncRNAs) are gaining attention as potential biomarkers for cancer diagnosis and prognosis. We have developed a computational model, UVA8, for prognosis of lower grade gliomas by combining lncRNA expression, Cox regression, and L1-LASSO penalization. The model was trained on a subset of patients in TCGA. Patients in TCGA, as well as a completely independent validation set (CGGA) could be dichotomized based on their risk score, a linear combination of the level of each prognostic lncRNA weighted by its multivariable Cox regression coefficient. UVA8 is an independent predictor of survival and outperforms standard epidemiological approaches and previous published lncRNA-based predictors as a survival model. Guilt-by-association studies of the lncRNAs in UVA8, all of which predict good outcome, suggest they have a role in suppressing interferon-stimulated response and epithelial to mesenchymal transition. The expression levels of eight lncRNAs can be combined to produce a prognostic tool applicable to diverse populations of glioma patients. The 8 lncRNA (UVA8) based score can identify grade II and grade III glioma patients with poor outcome, and thus identify patients who should receive more aggressive therapy at the outset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
船长完成签到,获得积分10
2秒前
爆米花应助油柑美式采纳,获得10
8秒前
卓初露完成签到 ,获得积分10
8秒前
英姑应助白华苍松采纳,获得10
10秒前
leemonster完成签到,获得积分10
10秒前
xc完成签到,获得积分10
12秒前
呆萌初南完成签到 ,获得积分10
14秒前
莫春莹完成签到 ,获得积分10
14秒前
山野的雾完成签到 ,获得积分10
15秒前
16秒前
Jasper应助qq158014169采纳,获得10
19秒前
19秒前
20秒前
小小威廉发布了新的文献求助10
20秒前
20秒前
20秒前
无闻完成签到,获得积分10
21秒前
21秒前
kittency完成签到 ,获得积分10
24秒前
25秒前
巫衣絮完成签到 ,获得积分10
26秒前
无闻发布了新的文献求助10
26秒前
顾矜应助小小威廉采纳,获得10
27秒前
领导范儿应助Ashore采纳,获得10
28秒前
28秒前
彬彬完成签到,获得积分10
29秒前
31秒前
郭大侠发布了新的文献求助10
31秒前
高高的以山完成签到 ,获得积分10
32秒前
dana发布了新的文献求助10
33秒前
浮游应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得10
34秒前
充电宝应助科研通管家采纳,获得10
34秒前
英俊的铭应助科研通管家采纳,获得10
34秒前
浮游应助无闻采纳,获得10
34秒前
008lsq发布了新的文献求助10
36秒前
bkagyin应助mbf采纳,获得30
37秒前
俏皮元珊完成签到 ,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498050
求助须知:如何正确求助?哪些是违规求助? 4595410
关于积分的说明 14449067
捐赠科研通 4528164
什么是DOI,文献DOI怎么找? 2481373
邀请新用户注册赠送积分活动 1465549
关于科研通互助平台的介绍 1438283