Inland Waters Suspended Solids Concentration Retrieval Based on PSO-LSSVM for UAV-Borne Hyperspectral Remote Sensing Imagery

高光谱成像 粒子群优化 均方误差 遥感 反演(地质) 环境科学 航程(航空) 最小二乘支持向量机 支持向量机 计算机科学 算法 数学 人工智能 地质学 统计 材料科学 构造盆地 古生物学 复合材料
作者
Lifei Wei,Can Huang,Yanfei Zhong,Zhou Wang,Xin Hu,Liqun Lin
出处
期刊:Remote Sensing [MDPI AG]
卷期号:11 (12): 1455-1455 被引量:37
标识
DOI:10.3390/rs11121455
摘要

Suspended solids concentration (SSC) is an important indicator of the degree of water pollution. However, when using an empirical or semi-empirical model adapted to some of the inland waters to estimate SSC on unmanned aerial vehicle (UAV)-borne hyperspectral images, the accuracy is often not sufficient. Thus, in this study, we attempted to use the particle swarm optimization (PSO) algorithm to find the optimal parameters of the least-squares support vector machine (LSSVM) model for the quantitative inversion of SSC. A reservoir and a polluted riverway were selected as the study areas. The spectral data of the 36-point and 29-point 400–900 nm wavelength range on the UAV-borne images were extracted. Compared with the semi-empirical model, the random forest (RF) algorithm and the competitive adaptive reweighted sampling (CARS) algorithm combined with partial least squares (PLS), the accuracy of the PSO-LSSVM algorithm in predicting the SSC was significantly improved. The training samples had a coefficient of determination ( R 2 ) of 0.98, a root mean square error (RMSE) of 0.68 mg/L, and a mean absolute percentage error (MAPE) of 12.66% at the reservoir. For the polluted riverway, PSO-LSSVM also performed well. Finally, the established SSC inversion model was applied to UAV-borne hyperspectral remote sensing (HRS) images. The results confirmed that the distribution of the predicted SSC was consistent with the observed results in the field, which proves that PSO-LSSVM is a feasible approach for the SSC inversion of UAV-borne HRS images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
5秒前
yar应助高兴的傲珊采纳,获得10
6秒前
墨染书香完成签到,获得积分10
6秒前
shen发布了新的文献求助10
7秒前
SciGPT应助科研废人采纳,获得10
10秒前
云鲲完成签到,获得积分10
10秒前
Wassuh发布了新的文献求助30
13秒前
jwq完成签到,获得积分10
13秒前
14秒前
15秒前
劲秉应助冷艳三娘采纳,获得10
16秒前
甜甜寄凡完成签到,获得积分10
17秒前
小蘑菇完成签到,获得积分10
18秒前
pophoo完成签到,获得积分10
18秒前
18秒前
东郭寻凝完成签到,获得积分10
20秒前
大意的诗珊完成签到,获得积分20
20秒前
20秒前
甜甜寄凡发布了新的文献求助10
20秒前
21秒前
yar应助玫瑰采纳,获得10
21秒前
勤奋的凌翠完成签到 ,获得积分10
21秒前
shen完成签到,获得积分10
22秒前
所所应助称心的蛟凤采纳,获得10
22秒前
柏代桃完成签到,获得积分10
22秒前
23秒前
王大白完成签到,获得积分20
23秒前
无花果应助科研进化中采纳,获得10
24秒前
柏代桃发布了新的文献求助10
25秒前
大模型应助大魁采纳,获得10
25秒前
李健应助kccccccc采纳,获得10
26秒前
27秒前
bkagyin应助大意的诗珊采纳,获得20
27秒前
科研通AI2S应助东郭寻凝采纳,获得10
27秒前
高挑的若雁完成签到 ,获得积分10
27秒前
28秒前
29秒前
cq220发布了新的文献求助10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465498
求助须知:如何正确求助?哪些是违规求助? 3058667
关于积分的说明 9062534
捐赠科研通 2748998
什么是DOI,文献DOI怎么找? 1508231
科研通“疑难数据库(出版商)”最低求助积分说明 696880
邀请新用户注册赠送积分活动 696535