Large-Scale Multi-Class Image-Based Cell Classification With Deep Learning

计算机科学 人工智能 支持向量机 卷积神经网络 模式识别(心理学) 机器学习 仿形(计算机编程) 上下文图像分类 深度学习 特征提取 数据挖掘 图像(数学) 操作系统
作者
Nan Meng,Edmund Y. Lam,Kevin K. Tsia,Hayden Kwok‐Hay So
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:23 (5): 2091-2098 被引量:88
标识
DOI:10.1109/jbhi.2018.2878878
摘要

Recent advances in ultra-high-throughput microscopy have enabled a new generation of cell classification methodologies using image-based cell phenotypes alone. In contrast to current single-cell analysis techniques that rely solely on slow and costly genetic/epigenetic analysis, these image-based analyses allow morphological profiling and screening of thousands or even millions of single cells at a fraction of the cost, and have been proven to demonstrate the statistical significance required for understanding the role of cell heterogeneity in diverse biological applications, ranging from cancer screening to drug candidate identification/validation processes. This paper examines the efficacies and opportunities presented by machine learning algorithms in processing large scale datasets with millions of label-free cell images. An automatic single-cell classification framework using convolutional neural network (CNN) has been developed. A comparative analysis of its efficiency in classifying large datasets against conventional k-nearest neighbors (kNN) and support vector machine (SVM) based methods are also presented. Experiments have shown that our proposed framework can efficiently identify multiple types cells with over 99% accuracy based on the phenotypic label-free bright-field images; and CNN-based models perform well and relatively stable against data volume compared with kNN and SVM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
权_888发布了新的文献求助10
刚刚
小孩儿完成签到,获得积分10
刚刚
刚刚
所所应助yulong采纳,获得10
1秒前
甘露糖发布了新的文献求助10
1秒前
怡然的梦之完成签到,获得积分10
1秒前
专注的映萱完成签到,获得积分10
1秒前
徐美丽关注了科研通微信公众号
1秒前
机智的明雪完成签到,获得积分10
1秒前
2秒前
丫丫发布了新的文献求助10
2秒前
中岛悠斗完成签到,获得积分10
2秒前
2秒前
蒲公英发布了新的文献求助10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
CodeCraft应助luckbaby采纳,获得10
4秒前
4秒前
OKC完成签到,获得积分10
4秒前
搁浅发布了新的文献求助10
4秒前
4秒前
科研通AI6应助望舒采纳,获得10
4秒前
4秒前
jialin发布了新的文献求助10
5秒前
Sicily发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
fei完成签到,获得积分10
6秒前
April完成签到 ,获得积分10
6秒前
阳光的杨完成签到 ,获得积分10
6秒前
6秒前
赘婿应助我爱看文献采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434108
求助须知:如何正确求助?哪些是违规求助? 4546360
关于积分的说明 14202294
捐赠科研通 4466320
什么是DOI,文献DOI怎么找? 2447985
邀请新用户注册赠送积分活动 1438980
关于科研通互助平台的介绍 1415901