Large-Scale Multi-Class Image-Based Cell Classification With Deep Learning

计算机科学 人工智能 支持向量机 卷积神经网络 模式识别(心理学) 机器学习 仿形(计算机编程) 上下文图像分类 深度学习 特征提取 数据挖掘 图像(数学) 操作系统
作者
Nan Meng,Edmund Y. Lam,Kevin K. Tsia,Hayden Kwok‐Hay So
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:23 (5): 2091-2098 被引量:85
标识
DOI:10.1109/jbhi.2018.2878878
摘要

Recent advances in ultra-high-throughput microscopy have enabled a new generation of cell classification methodologies using image-based cell phenotypes alone. In contrast to current single-cell analysis techniques that rely solely on slow and costly genetic/epigenetic analysis, these image-based analyses allow morphological profiling and screening of thousands or even millions of single cells at a fraction of the cost, and have been proven to demonstrate the statistical significance required for understanding the role of cell heterogeneity in diverse biological applications, ranging from cancer screening to drug candidate identification/validation processes. This paper examines the efficacies and opportunities presented by machine learning algorithms in processing large scale datasets with millions of label-free cell images. An automatic single-cell classification framework using convolutional neural network (CNN) has been developed. A comparative analysis of its efficiency in classifying large datasets against conventional k-nearest neighbors (kNN) and support vector machine (SVM) based methods are also presented. Experiments have shown that our proposed framework can efficiently identify multiple types cells with over 99% accuracy based on the phenotypic label-free bright-field images; and CNN-based models perform well and relatively stable against data volume compared with kNN and SVM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
就是嘀咕完成签到,获得积分10
刚刚
1秒前
1秒前
搜集达人应助不是二次元采纳,获得10
1秒前
1秒前
2秒前
2秒前
pups发布了新的文献求助10
2秒前
彭于彦祖应助xlll采纳,获得50
3秒前
Xin完成签到,获得积分10
3秒前
自然元柏完成签到,获得积分10
4秒前
sxm完成签到 ,获得积分10
4秒前
Owen应助lilian采纳,获得10
4秒前
大无畏发布了新的文献求助10
5秒前
高艳慧发布了新的文献求助10
5秒前
5秒前
小于发布了新的文献求助10
5秒前
星星的梦完成签到,获得积分10
6秒前
冬云雀完成签到,获得积分10
6秒前
Jasper应助陈琳采纳,获得10
6秒前
整齐雁芙应助涉几尘采纳,获得10
6秒前
木子完成签到 ,获得积分10
6秒前
独特的尔风完成签到,获得积分10
6秒前
WJ发布了新的文献求助10
6秒前
前百年253完成签到,获得积分10
7秒前
8秒前
8秒前
叶永芬完成签到,获得积分10
8秒前
Sunflower发布了新的文献求助10
9秒前
上官若男应助wxy采纳,获得10
9秒前
9秒前
张羊羔完成签到,获得积分10
9秒前
xiangdemeilo完成签到,获得积分10
10秒前
CipherSage应助进取拼搏采纳,获得10
10秒前
桐桐应助鲸鱼采纳,获得10
10秒前
Lucas应助居选金采纳,获得10
10秒前
11秒前
11秒前
11秒前
Wang完成签到,获得积分10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961892
求助须知:如何正确求助?哪些是违规求助? 3508143
关于积分的说明 11139862
捐赠科研通 3240824
什么是DOI,文献DOI怎么找? 1791076
邀请新用户注册赠送积分活动 872725
科研通“疑难数据库(出版商)”最低求助积分说明 803344