Large-Scale Multi-Class Image-Based Cell Classification With Deep Learning

计算机科学 人工智能 支持向量机 卷积神经网络 模式识别(心理学) 机器学习 仿形(计算机编程) 上下文图像分类 深度学习 特征提取 数据挖掘 图像(数学) 操作系统
作者
Nan Meng,Edmund Y. Lam,Kevin K. Tsia,Hayden Kwok‐Hay So
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:23 (5): 2091-2098 被引量:85
标识
DOI:10.1109/jbhi.2018.2878878
摘要

Recent advances in ultra-high-throughput microscopy have enabled a new generation of cell classification methodologies using image-based cell phenotypes alone. In contrast to current single-cell analysis techniques that rely solely on slow and costly genetic/epigenetic analysis, these image-based analyses allow morphological profiling and screening of thousands or even millions of single cells at a fraction of the cost, and have been proven to demonstrate the statistical significance required for understanding the role of cell heterogeneity in diverse biological applications, ranging from cancer screening to drug candidate identification/validation processes. This paper examines the efficacies and opportunities presented by machine learning algorithms in processing large scale datasets with millions of label-free cell images. An automatic single-cell classification framework using convolutional neural network (CNN) has been developed. A comparative analysis of its efficiency in classifying large datasets against conventional k-nearest neighbors (kNN) and support vector machine (SVM) based methods are also presented. Experiments have shown that our proposed framework can efficiently identify multiple types cells with over 99% accuracy based on the phenotypic label-free bright-field images; and CNN-based models perform well and relatively stable against data volume compared with kNN and SVM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏听寒发布了新的文献求助10
1秒前
1秒前
yang发布了新的文献求助10
3秒前
3秒前
4秒前
田様应助炙热的语海采纳,获得10
4秒前
HJM关闭了HJM文献求助
5秒前
共享精神应助工藤新一采纳,获得10
5秒前
Newky发布了新的文献求助10
5秒前
jia发布了新的文献求助10
7秒前
我讨厌文献综述完成签到 ,获得积分10
7秒前
三更笔舞发布了新的文献求助10
7秒前
9秒前
9秒前
Hw发布了新的文献求助10
9秒前
11秒前
小蘑菇应助机智的三国菌采纳,获得10
12秒前
ding应助害羞外套采纳,获得10
12秒前
12秒前
田様应助lichun410932采纳,获得10
13秒前
jia完成签到,获得积分10
13秒前
misa发布了新的文献求助10
14秒前
共享精神应助gqz采纳,获得10
15秒前
我能行完成签到,获得积分10
16秒前
Saunak发布了新的文献求助20
17秒前
jbhb发布了新的文献求助10
17秒前
18秒前
Moonlight完成签到,获得积分10
18秒前
19秒前
19秒前
炙热的语海完成签到,获得积分10
20秒前
21秒前
鳗鱼凡波发布了新的文献求助10
21秒前
wanci应助会会跑跑跑采纳,获得10
23秒前
知愈发布了新的文献求助10
23秒前
23秒前
23秒前
Jemezs发布了新的文献求助10
23秒前
24秒前
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310273
求助须知:如何正确求助?哪些是违规求助? 2943254
关于积分的说明 8513427
捐赠科研通 2618482
什么是DOI,文献DOI怎么找? 1431111
科研通“疑难数据库(出版商)”最低求助积分说明 664374
邀请新用户注册赠送积分活动 649557