运动性
下调和上调
胰腺癌
生物
细胞生物学
癌细胞
细胞骨架
细胞
肌动蛋白
细胞迁移
肌动蛋白细胞骨架
癌症研究
癌症
生物化学
基因
遗传学
作者
Keisuke Taniuchi,Mutsuo Furihata,Seiji Naganuma,Toshiji Saibara
摘要
Abstract WAVE2 is a member of the WASP/WAVE family of actin cytoskeletal regulatory proteins; unfortunately, little is known about its function in pancreatic cancers. In this study, we report the role of WAVE2 in the motility and invasiveness of pancreatic cancer cells. High WAVE2 expression in human pancreatic cancer tissues was correlated with overall survival. WAVE2 accumulated in the cell protrusions of pancreatic cancer cell lines. Downregulation of WAVE2 by small interfering RNA decreased the cell protrusions and inhibited the motility and invasiveness of pancreatic cancer cells. WAVE2 promoted pancreatic cancer cell motility and invasion by forming a complex with the actin cytoskeletal protein alpha‐actinin 4 (ACTN4). Downregulation of ACTN4 by small interfering RNA also inhibited the motility and invasiveness of the cells through a decrease in cell protrusions. Further investigation showed that WAVE2/ACTN4 signaling selectively stimulated p27 phosphorylation and thereby increased the motility and invasiveness of the cells. These results suggest that WAVE2 and ACTN4 stimulate p27 phosphorylation and provide evidence that WAVE2 promotes the motility and invasiveness of pancreatic cancer cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI